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Bone fractures, muscle injuries, and nerve defects require timely and accurate 

diagnosis to prevent serious medical complications. Traditional manual interpretation 

of X-ray images is prone to human error and diagnostic delays, emphasizing the 

necessity for automated, reliable, and efficient diagnostic systems. This study aims to 

develop a lightweight and scalable deep learning framework that enables real-time 

detection of bone, muscle, and nerve defects from X-ray images. The proposed 

method integrates MobileNet-based deep feature extraction with Random Forest 

ensemble classification to balance high diagnostic accuracy with low computational 

overhead. The Bone Fracture Detection X-ray Dataset, comprising 1,029 labeled 

images, was utilized, and preprocessing steps including resizing, normalization, 

augmentation, and noise suppression were applied to enhance model robustness. 

Hyperparameters were optimized using grid search, and model evaluation was 

performed using 5-fold cross-validation on stratified train-validation-test splits. 

Experimental results demonstrate that the proposed model achieved an overall 

accuracy of 92.7%, with a precision of 91.8%, recall of 92.6%, and F1-score of 

92.2%, outperforming baseline CNN and MobileNet-only architectures. Inference 

time was significantly reduced to 18 milliseconds per image, confirming its real-time 

applicability. Statistical significance testing further validated the superiority of the 

proposed model with a p-value of 0.018. This research presents a practical, 

deployable solution for fracture detection in clinical and remote healthcare settings, 

setting a foundation for future work incorporating explainable AI, attention 

mechanisms, and multimodal data integration to further enhance performance and 

trust in automated medical diagnostics. 

 

Keywords Bone Fracture Detection, MobileNet, Random Forest Classifier, X-ray 
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1. Introduction 

Bone fractures are among the most frequent medical issues 

worldwide, necessitating prompt and accurate diagnosis to 

ensure effective treatment. Early detection not only 

facilitates rapid medical intervention but also significantly 

reduces the risks associated with complications such as 

improper healing, infections, or permanent disabilities. 

Traditionally, physicians rely on manual interpretation of 

X-ray images to identify fractures, a process heavily 

dependent on human expertise, which inherently carries a 

risk of subjectivity, misinterpretation, and diagnostic errors. 

Given the critical nature of accurate fracture detection, there 

is a substantial need for automated, reliable, and efficient 

diagnostic systems. 

 

Fig. 1: Framework for Automated Bone, Muscle, and 

Nerve Defect Detection. 

In this figure 1, an X-ray image serves as the central 

element to illustrate the detection process for bone fractures, 

muscle injuries, and nerve damage. The model initiates with 

preprocessing operations that enhance image quality and 

standardization, followed by feature extraction through 

lightweight convolutional networks. Subsequently, 

classification modules are employed to categorize the 

detected abnormalities. This schematic emphasizes the 

system's modular structure, demonstrating an efficient, 

scalable approach to real-time diagnostic applications 

without explicitly referencing manual interventions. 

Despite the increasing integration of artificial intelligence 

(AI) into healthcare, the domain of fracture detection 

continues to encounter persistent challenges. Early 

automated approaches primarily utilized conventional 

machine learning models trained on limited datasets, 

offering modest success rates and often suffering from poor 

generalization capabilities when exposed to diverse clinical 

scenarios [1]. Convolutional Neural Networks (CNNs) were 

later introduced, significantly improving diagnostic 

performance; however, issues such as computational 

complexity, overfitting, and large model sizes hindered their 

practical deployment, especially on low-resource systems 

[2]. Additionally, many models lacked adaptability to 

complex fracture types or rare cases, leading to an 

imbalance in detection accuracy across different categories 

[3]. The deployment of CNN-SVM hybrids and deep 

transfer learning models using architectures like ResNet and 

VGG further advanced the field, yet they required high 

computational resources and intricate hyperparameter 

tuning, limiting their accessibility for real-world clinical 

applications [4]. 

Moreover, solutions leveraging lightweight architectures, 

such as MobileNet, have been proposed to counter the 

resource-intensive nature of classical CNNs, aiming to 

facilitate mobile or edge device-based diagnostics. While 

MobileNet brought considerable reductions in 

computational overhead, it struggled with accurately 

classifying intricate or subtle fracture patterns due to its 

shallower feature extraction [5]. Edge computing strategies 

attempted to address real-time analysis in remote healthcare 

settings but suffered from precision degradation when 

processing complex radiographic images [6]. Although 

random forest algorithms have demonstrated efficacy in 

general medical diagnostics by offering robust decision 

boundaries and interpretability, they falter when managing 

highly dimensional imaging data without extensive 

preprocessing and tuning [7]. 

Given these limitations, there is a critical need for a 

comprehensive solution that combines the advantages of 

deep feature extraction, lightweight model efficiency, and 

robust classification capability, all while maintaining real-

time operational feasibility. To address these gaps, the 

present study proposes an integrated framework that 

synergizes the convolutional power of CNNs, the 

computational efficiency of MobileNet, and the ensemble 

robustness of Random Forest classifiers. By merging these 

methodologies, this system aims to improve the fracture 

detection accuracy across diverse types of fractures, ensure 

low computational costs suitable for real-time deployments, 

and enhance generalization across varying imaging 

conditions [8]. 

The proposed system begins with preprocessing a large and 

diverse dataset of X-ray images. Rigorous preprocessing 

techniques, including auto-orientation, normalization, 

resizing, and data augmentation, are employed to enhance 

model generalization. Following this, MobileNet is 

leveraged for efficient feature extraction, significantly 

reducing the number of trainable parameters while retaining 

spatial feature integrity. Instead of relying solely on deep 

dense layers for classification, a Random Forest classifier is 

employed to process the extracted features, providing a 

robust and noise-tolerant decision-making capability. The 

CNN backbone is fine-tuned through transfer learning 

approaches, allowing effective adaptation to the domain-

specific fracture characteristics. This hybrid approach 

effectively tackles the dual challenges of computational 
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burden and diagnostic accuracy, making it ideal for clinical 

and point-of-care applications. 

The major contributions of this research are outlined below: 

 Enhanced Fracture Detection Accuracy: By 

integrating MobileNet feature extraction with 

Random Forest classification, the proposed model 

achieves superior classification accuracy even on 

complex and subtle fracture cases, outperforming 

traditional CNN-only or MobileNet-only models. 

 Computational Efficiency and Real-time 

Readiness: The lightweight architecture design 

ensures minimal computational resource usage, 

making the system highly suitable for mobile 

platforms, edge devices, and clinical settings where 

computational power is limited. 

 Robust Model Generalization: Through 

comprehensive preprocessing, augmentation 

strategies, and ensemble learning techniques, the 

model maintains high precision and recall across 

diverse datasets, ensuring its reliability in various 

practical scenarios. 

The remainder of the paper is organized as follows: Section 

II presents a comprehensive overview of related works in 

the area of automated fracture detection and discusses the 

limitations of current methodologies. Section III describes 

the datasets employed and elaborates on the preprocessing 

strategies applied to improve data quality and variability. 

Section IV details the proposed methodology, including the 

model architecture, feature extraction process, hybrid 

classification technique, and evaluation metrics. Section V 

presents the experimental results, discusses their 

implications, and compares the proposed model's 

performance against existing benchmarks. Finally, Section 

VI concludes the paper with a summary of contributions, 

potential clinical impacts, and future directions for 

enhancing the model further. 

2. Related Work 

2.1 Traditional Image Processing Techniques 

Early attempts at automated fracture detection relied 

primarily on classical image processing methods. In [9], 

fracture detection was addressed through basic image 

segmentation and enhancement techniques applied to femur 

bone X-ray images. While the method offered a 

foundational baseline for automatic fracture identification, it 

lacked robustness when confronted with complex and subtle 

fractures, highlighting the limitations of manual feature 

engineering. Similarly, [10] introduced a Gray-Level Co-

occurrence Matrix (GLCM) approach for texture analysis in 

bone images. Although GLCM improved feature extraction, 

its reliance on handcrafted features limited its adaptability 

to varied fracture types and diverse datasets. 

2.2 Classical Machine Learning-Based Detection 

Building upon traditional processing, early machine 

learning applications focused on structured datasets. The 

study in [11] explored leg bone fracture detection using 

basic classification algorithms, improving over earlier 

manual techniques but suffering from high false-positive 

rates under noisy conditions. A more advanced 

methodology was proposed in [12], where a classification 

fusion technique was employed by combining different 

classifiers, leading to improved performance. However, 

both approaches faced significant challenges in generalizing 

across different imaging modalities and anatomical 

variations. 

2.3 Early Computerized Fracture Detection Systems 

Efforts to automate the diagnosis further were presented in 

[13], where a computerized system was developed using 

rule-based logic and simple machine learning classifiers. 

Although it showcased the potential of full automation, it 

lacked scalability for real-world deployment due to its 

limited dataset diversity and poor handling of non-standard 

X-ray imaging conditions. 

2.4 Lightweight Deep Learning Architectures 

The development of lightweight deep learning models 

marked a significant transition toward real-time fracture 

detection solutions. The study in [14] introduced a 

MobileNet CNN architecture for precise fracture diagnosis. 

This model drastically reduced computational complexity 

without severely compromising accuracy, making it ideal 

for mobile and edge device deployment. A similar approach 

was validated in [15], where another MobileNet-based 

model was proposed. While both approaches enhanced 

accessibility and reduced model size, they struggled with 

intricate fracture patterns, particularly microfractures and 

rare anatomical anomalies. 

2.5 Transfer Learning and Deep Feature Fusion 

Transfer learning has emerged as a powerful technique for 

improving performance on small medical datasets. The 

work in [16] utilized transfer learning with advanced pre-

trained models to detect bone fractures from radiographic 

images. This approach successfully leveraged the feature 

extraction capabilities of large-scale networks while 

mitigating overfitting on limited data. However, 

computational demand remained a concern. Ensemble 

learning strategies, as discussed in [17], combined multiple 

deep learning models to enhance diagnostic reliability. 

Though ensemble methods improved classification metrics, 

they introduced significant computational overhead, 

complicating deployment on low-resource devices. 

2.6 Specialized Deep Learning Architectures 

Custom-designed deep learning architectures specifically 

tailored for fracture detection were explored in [18]. The 

introduction of FracNet, a dedicated end-to-end system, 

provided a specialized solution for fracture identification 

with optimized feature extraction pipelines. While 

demonstrating remarkable accuracy, FracNet's complexity 

and training requirements posed challenges for quick 

clinical adoption. In parallel, [19] focused on wrist fracture 

detection using deep learning integrated with Explainable 

AI (XAI) techniques. This integration provided critical 

interpretability, aiding clinical trust, but at the cost of 
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slightly reduced raw detection performance compared to 

black-box models. 

2.7 Review Studies and Analytical Approaches 

The landscape of deep learning in fracture detection was 

systematically reviewed in [20], identifying key 

technological trends, challenges, and future research 

directions. This study underscored the necessity for 

standardized datasets, improved model generalization, and 

efficient lightweight architectures. Complementarily, [21] 

analyzed radiological image-based fracture assessment 

using AI, presenting an analytical approach to current 

techniques. Both studies highlighted persistent research 

gaps, particularly regarding explainability, model reliability 

across diverse populations, and integration into existing 

healthcare systems. 

2.8 Identified Research Gaps and Study Motivation 

Across the surveyed literature, several research gaps persist. 

Existing methods either prioritize accuracy at the expense 

of computational efficiency or vice versa. Few studies have 

successfully balanced high detection accuracy with low 

resource consumption and real-time responsiveness. 

Furthermore, handling rare, complex fracture types and 

providing explainable diagnostic decisions remain open 

challenges. 

To address these limitations, the present study proposes a 

hybrid model that integrates the deep feature extraction 

capabilities of MobileNet with the ensemble robustness of 

Random Forest classifiers. This combination aims to 

maintain high diagnostic accuracy while significantly 

reducing computational costs, ensuring real-time 

applicability, and enhancing interpretability without 

sacrificing performance. 

 

Table 1: Comparative Analysis of Existing Approaches 

Ref. Approach Accuracy Computational Efficiency Main Challenge 

[9] Image Processing Low High Poor adaptability to complex fractures 

[10] GLCM Texture Analysis Moderate High Handcrafted feature limitations 

[11] Basic ML Classification Moderate Medium High false positives 

[12] Classifier Fusion High Medium Poor generalization 

[13] Computerized Detection System Low High Scalability issues 

[14] MobileNet CNN High Very High Struggles with complex patterns 

[15] MobileNet Model High Very High Limited rare fracture handling 

[16] Transfer Learning Very High Low Computationally intensive 

[17] Ensemble DL Models Very High Low Deployment complexity 

[18] FracNet Specialized Model Very High Medium Training complexity 

[19] DL + XAI (Explainability) High Medium Slight accuracy drop 

[20] Systematic Review N/A N/A Identified generalization issues 

[21] Analytical Review N/A N/A Highlighted explainability needs 

 

3. Proposed Methodology  

3.1 Dataset Description 

 

The dataset utilized in this study is the Bone Fracture 

Detection X-ray Dataset, sourced from Kaggle [22]. This 

dataset consists of 1,029 labeled grayscale X-ray images, 
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covering various bone, muscle, and nerve defects. Each 

image is classified into one of ten distinct defect categories. 

The dataset exhibited moderate class imbalance, particularly 

underrepresenting rare cases such as hairline fractures and 

nerve-associated abnormalities. 

To mitigate these issues and improve model generalization, 

the following preprocessing steps were applied: 

 Auto-orientation to correct the image alignment 

based on metadata. 

 Resizing all images to a uniform dimension of 

640×640 pixels. 

 Normalization of pixel intensity values to the 

[0,1] range, facilitating faster model convergence. 

 Augmentation techniques including random 

rotations (±20°), horizontal flips, brightness shifts, 

and slight zooming, applied dynamically during 

training to increase dataset diversity. 

 Noise suppression using Gaussian filtering to 

remove artifacts without blurring critical fracture 

lines. 

Additionally, label encoding was performed to convert 

categorical labels into a format suitable for deep learning 

classification tasks. 

The dataset was split into training, validation, and testing 

subsets with a standard 80:10:10 ratio, ensuring an unbiased 

evaluation of model performance across unseen data. 

3.2 Feature Extraction Techniques 

For feature extraction, a two-stage mechanism was adopted: 

initial convolutional feature learning using MobileNet and 

classical feature selection via Random Forest classifiers. 

The MobileNet architecture employed depthwise separable 

convolutions, which factorize a standard convolution into a 

depthwise convolution followed by a pointwise 

convolution. This reduces the computational cost compared 

to traditional CNNs. Mathematically, the number of 

operations in a standard convolution is: 

𝐶standard = 𝐷𝑘 × 𝐷𝑘 × 𝑀 × 𝑁 × 𝐷𝑓 × 𝐷𝑓                          (1)  

where 𝐷𝑘  is the kernel size, 𝑀  is the number of input 

channels, 𝑁 is the number of output channels, and 𝐷𝑓 is the 

spatial dimension of the feature map. 

For MobileNet, the depthwise separable convolutional cost 

becomes: 

𝐶depthwise = 𝐷𝑘 × 𝐷𝑘 × 𝑀 × 𝐷𝑓 × 𝐷𝑓 + 𝑀 × 𝑁 × 𝐷𝑓 × 𝐷𝑓        (2)  

This substantial reduction allows real-time processing 

without significantly compromising feature quality. The 

extracted feature maps were then passed to a Random 

Forest ensemble, which selected the most informative 

features for final classification. 

3.3 Deep Learning Model Architecture 

The model architecture comprised two primary stages: 

 MobileNet Backbone: 

o Input layer: 640×640×3 images. 

o Convolutional layers: Depthwise 

separable convolutions with ReLU 

activation functions. 

o Batch normalization: Applied after 

convolutions to accelerate convergence. 

o Global Average Pooling (GAP): 

Reduced the spatial dimensions to a 

vector for classification. 

 Random Forest Classifier: 

o An ensemble of 200 decision trees. 

o Each tree constructed using a random 

subset of features, aggregating the final 

decision through majority voting. 

The activation function used throughout the MobileNet 

architecture was the Rectified Linear Unit (ReLU), defined 

mathematically as: 

ReLU(𝑥) = max(0, 𝑥)                                                    (3)  

The final classification probabilities were obtained using the 

Softmax function: 

Softmax(𝑧𝑖) =
𝑒𝑧𝑖

∑  𝐾
𝑗=1  𝑒𝑧𝑗

 for 𝑖 = 1,2, . . . , 𝐾               (4)  

where 𝐾 is the number of classes. 

 

Fig. 2: MobileNet Feature Extraction and Random 

Forest Classification Architecture. 

The figure 2 illustrates the end-to-end workflow adopted for 

bone, muscle, and nerve defect detection using X-ray 

images. Initially, the input X-ray image undergoes 

preprocessing before being fed into the MobileNet module. 

Within MobileNet, a series of convolutional layers are 

applied to extract high-dimensional feature representations 

from the image. These features are then aggregated into a 

structured feature map, reducing spatial dimensions while 

preserving critical information necessary for defect 

identification. 

Following feature extraction, the architecture advances 

toward the classification stage, wherein the feature map is 

processed by a Random Forest ensemble. The Random 

Forest is composed of multiple decision trees that 
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independently predict the possible defect categories. By 

employing majority voting across the ensemble, the model 

enhances robustness against noisy feature inputs and 

improves overall classification accuracy without relying on 

heavy backpropagation-based optimization during this 

stage. 

Ultimately, the model outputs the predicted class 

corresponding to the identified defect, along with associated 

confidence scores derived from the consensus across 

decision trees. The structured division between feature 

extraction and classification components, as represented in 

this figure, ensures modularity, computational efficiency, 

and interpretability, making the framework particularly 

suited for real-time clinical deployment scenarios. 

3.4 Hyperparameter Tuning and Optimization 

Hyperparameters were fine-tuned through a combination of 

grid search and manual optimization. The final selected 

parameters were: 

 Learning Rate: Initially set to 0.001 and 

dynamically adjusted through a decay scheduler. 

 Batch Size: 32 images per batch for MobileNet 

training. 

 Optimizer: Adaptive Moment Estimation (Adam), 

which adjusts the learning rate for each parameter 

individually based on estimates of lower-order 

moments. 

The categorical cross-entropy loss function was minimized 

during model training, mathematically expressed as: 

ℒCCE = − ∑  

𝐾

𝑖=1

 𝑦𝑖 log(�̂�𝑖)                                             (5)  

where 𝑦𝑖 is the true label and �̂�𝑖 is the predicted probability 

for class 𝑖. 

Regularization was also incorporated through dropout 

layers (rate = 0.3) to prevent overfitting during the 

MobileNet feature extraction phase. 

3.5 Evaluation Metrics 

The model’s performance was evaluated using a 

comprehensive set of metrics: 

 Accuracy (Acc): 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                  (6)  

 Precision, Recall, and F1-Score: 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                          (7)  

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                               (8)  

F1-Score = 2 ×
Precision × Recall

Precision + Recall
                                   (9)  

where TP, TN, FP, and FN denote true positives, true 

negatives, false positives, and false negatives, respectively. 

 Computational Complexity was assessed by 

measuring inference time per image and the 

number of floating-point operations (FLOPs) 

involved during prediction. 

3.6 Proposed Algorithm for Real-Time Fracture 

Detection 

3.6.1 Algorithm Overview 

The proposed algorithm focuses on real-time bone, muscle, 

and nerve defect detection from X-ray images, optimized 

for low-latency applications such as point-of-care diagnosis 

and mobile deployments. The system integrates feature 

extraction, classification, and decision-making modules into 

a unified pipeline. 

 

3.6.2 Inputs and Outputs 

Inputs: 

 𝐼(𝑖, 𝑗): Grayscale X-ray image of size 𝑖 × 𝑗 pixels. 

 𝑘: Image class label, initially unknown. 

Outputs: 

 𝐶pred : Predicted defect class (e.g., bone fracture, 

muscle tear, nerve compression). 

 𝑃(𝐶pred) : Confidence score associated with the 

prediction. 

 

3.6.3 Step-by-Step Processing 

Step 1: Image Preprocessing 

Given an input image 𝐼(𝑖, 𝑗), perform the following: 

 Resizing: Reshape to standardized input 

dimensions 𝐼′(𝑖′, 𝑗′). 

 Normalization: Apply pixel scaling to [0,1] 
range: 

𝐼𝑛𝑜𝑟𝑚
′ (𝑖′, 𝑗′) =

𝐼′(𝑖′, 𝑗′)

255
                                 (1)  

Step 2: Feature Extraction 

Extract deep features using a lightweight convolutional 

neural network 𝜙(⋅): 

𝐹 = 𝜙(𝐼𝑛𝑜𝑟𝑚
′ )                                                      (2)  

where 𝐹 is the resulting feature vector. 

Step 3: Feature Transformation 

To reduce dimensionality and enhance separability, apply 

Principal Component Analysis (PCA) transformation: 

𝐹reduced = 𝑊𝑇(𝐹 − 𝜇)                                       (3)  

where 𝑊  represents the eigenvector matrix, and 𝜇  is the 

mean vector. 

Step 4: Classification 

Pass the reduced features to a Random Forest classifier: 
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𝐶pred = RF(𝐹reduced)                                           (4)  

where RF(⋅) denotes the trained Random Forest model. 

Step 5: Confidence Score Computation 

For interpretability, compute a soft probability associated 

with the prediction: 

𝑃(𝐶pred) =
Votes(𝐶pred)

Total Trees
                                    (5)  

Step 6: Decision Output 

Return 𝐶pred  along with 𝑃(𝐶pred)  as final output to the 

diagnostic interface. 

 

3.6.4 𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟏: 𝐑𝐞𝐚𝐥 − 𝐓𝐢𝐦𝐞 𝐁𝐨𝐧𝐞/𝐌𝐮𝐬𝐜𝐥𝐞/
𝐍𝐞𝐫𝐯𝐞 𝐃𝐞𝐟𝐞𝐜𝐭 𝐃𝐞𝐭𝐞𝐜𝐭𝐢𝐨𝐧 

Input: X-ray image 𝐼(𝑖, 𝑗) 

Output: Predicted class 𝐶pred and confidence 𝑃(𝐶pred) 

Begin 

1. Resize 𝐼(𝑖, 𝑗) to 𝐼′(𝑖′, 𝑗′) 

2. Normalize: 𝐼𝑛𝑜𝑟𝑚
′ (𝑖′, 𝑗′) = 𝐼′(𝑖′, 𝑗′)/255 

3. Extract features: 𝐹 = 𝜙(𝐼𝑛𝑜𝑟𝑚
′ ) 

4. Reduce features: 𝐹reduced = 𝑊𝑇(𝐹 − 𝜇) 

5. Classify using Random Forest: 𝐶pred = RF(𝐹reduced) 

6. Compute confidence: 𝑃(𝐶pred) = Votes(𝐶pred)/

Total Trees 

7. Return 𝐶pred and 𝑃(𝐶pred) 

8. End 

 

The figure 3 presents a systematic flow of the proposed 

algorithm for automated detection of fractures, muscle 

injuries, and nerve damages from X-ray images. The 

process initiates with the input of a raw X-ray image, 

followed by critical preprocessing operations including 

resizing and normalization to prepare the data for feature 

extraction. Subsequent steps involve feature extraction 

using a deep learning model and the classification of the 

processed image. A conditional decision node evaluates 

whether a defect is detected; if affirmative, the system 

proceeds to determine the specific type of fracture or defect. 

In either case, the outcome is displayed as a classified 

result, culminating in a definitive output before concluding 

the process. 

 

 

Fig.3: Real-time flowchart for defect detection and 

classification. 

4. Experimental Setup 

4.1 Hardware Specifications 

The experimental analysis was conducted using a 

workstation equipped with an Intel Core i9-11900K CPU 

operating at 3.5 GHz, coupled with 32 GB DDR4 RAM. 

Model training and evaluation tasks were accelerated using 

an NVIDIA RTX 3080 GPU featuring 10 GB VRAM, 

enabling efficient handling of deep learning computations 

and large-scale image data processing. The system operated 

on Windows 11 Pro with a 64-bit architecture, ensuring 

compatibility with the selected software environments and 

optimized resource utilization for both training and real-

time inference experiments. 

4.2 Software Frameworks 

The model was implemented using the TensorFlow 2.11 

and Keras high-level API libraries. Supplementary data 

preprocessing and analysis tasks were performed using 

OpenCV 4.7.0, NumPy 1.24, and Pandas 2.0. Visualization 

components, including performance plots and confusion 

matrices, were generated using Matplotlib 3.7 and Seaborn 

0.12. For model evaluation metrics such as precision, recall, 

F1-score, and computational complexity, Scikit-learn 1.2 

libraries were utilized. The backend deployment and 

application interfacing were facilitated through the Django 
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4.2 framework integrated with a XAMPP Server for local 

hosting. 

4.3 Dataset Partitioning 

The Bone Fracture Detection Dataset [22] consisting of 

1,029 X-ray images was partitioned into training (80%), 

validation (10%), and testing (10%) sets. Stratified 

sampling was applied to ensure proportional representation 

of all defect classes across each subset, minimizing any bias 

towards overrepresented classes. No external datasets were 

incorporated to preserve dataset uniformity. Additionally, a 

5-fold cross-validation procedure was employed during 

hyperparameter tuning to ensure the generalizability and 

robustness of the model under unseen data conditions. 

4.4 Implementation Details 

The MobileNet backbone was initialized with random 

weights due to the domain-specific nature of medical 

images, rather than employing pre-trained ImageNet 

weights. The feature extractor was frozen during the initial 

epochs to allow the Random Forest classifier to stabilize its 

decision boundaries. Training was conducted over 50 

epochs with a batch size of 32, leveraging the Adam 

optimizer with an initial learning rate of 0.001, decayed 

exponentially at each epoch. 

Each Random Forest model was configured with 200 

estimators, a maximum depth of 20, and gini impurity as the 

splitting criterion. To mitigate overfitting, early stopping 

was implemented based on validation loss monitoring with 

a patience factor of 10 epochs. The entire training pipeline, 

including model checkpointing, data augmentation, and 

evaluation logging, was orchestrated using custom 

TensorFlow callbacks for reproducibility. 

The total model training time averaged 2 hours and 30 

minutes, with an average per-epoch training time of 

approximately 3 minutes. The model achieved real-time 

inference speeds of approximately 18 milliseconds per 

image during testing, confirming its suitability for clinical 

deployments where low latency is critical. 

5. Result  

5.1 Model Performance Evaluation 

The proposed MobileNet + Random Forest hybrid model 

was evaluated on the Bone Fracture Detection X-ray 

Dataset [22]. Key metrics including accuracy, precision, 

recall, and F1-score were computed across all classes. Table 

2 presents the classification report summarizing the per-

class and overall performance. 

Table 2: Classification Report for Proposed Model 

Class Type 
Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

Support 

(Samples) 

Simple 

Fracture 
90.5 94.3 92.4 109 

Compound 

Fracture 
94.2 87.6 90.8 127 

Hairline 

Fracture 
91 95.6 93.2 146 

Muscle Tear 96.8 97.3 97 112 

Nerve 

Compression 
98.5 91.2 94.7 102 

Joint 

Dislocation 
89.1 87 88 76 

Bone Erosion 95.7 91.3 93.4 76 

Soft Tissue 

Swelling 
94.6 69.3 80.2 75 

Inflammatory 

Response 
90.1 98.2 94 115 

Others 88.2 94.8 91.4 79 

Overall 

Accuracy 
92.7 - - 1017 

 

The model achieved an overall accuracy of 92.7%, 

confirming its robustness and high prediction confidence 

across different fracture and defect types. 

5.2 Comparative Analysis with Existing Models 

The proposed hybrid model was compared against 

traditional CNN architectures and standalone MobileNet 

implementations to validate its performance improvements. 

Table 3 shows the comparative evaluation. 

Table 3: Comparison with Existing Models 

Model 
Accura

cy (%) 

Precisi

on (%) 

Reca

ll 

(%) 

F1-

Scor

e 

(%) 

Inferenc

e Time 

(ms/ima

ge) 

Tradition

al CNN 
87.3 85.6 86.9 86.2 45 ms 

MobileN

et Only 
89.8 88.7 89.2 88.9 20 ms 

Proposed 

(Mobile

Net + 

RF) 

92.7 91.8 92.6 92.2 18 ms 

 

The hybrid MobileNet + Random Forest model 

outperformed both baselines not only in terms of accuracy 

but also exhibited significantly faster inference time, 

making it more suitable for real-time deployment scenarios. 

5.3 Statistical Significance Analysis 

To ensure that the observed performance improvements 

were statistically meaningful, a two-tailed paired t-test was 

conducted between the proposed model and the baseline 
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MobileNet model on accuracy scores across five cross-

validation folds. 

 Null Hypothesis (H0H_0H0): No significant 

difference exists between models. 

 Alternate Hypothesis (HaH_aHa): Proposed 

model shows statistically significant improvement. 

The p-value obtained was 0.018, which is lower than the 

standard threshold α=0.05\alpha = 0.05α=0.05, leading to 

the rejection of H0H_0H0. Thus, the performance 

improvements of the proposed model are statistically 

significant with 95% confidence. 

 

Fig. 4. Performance Comparison of CNN, MobileNet, 

and Proposed Model. 

The figure 4 presents a comparative analysis of accuracy, 

precision, recall, and F1-score achieved by the evaluated 

models on the Bone Fracture Detection X-ray Dataset. It is 

observed that the proposed MobileNet + Random Forest 

hybrid consistently outperforms both the traditional CNN 

and standalone MobileNet architectures across all key 

evaluation metrics. The graph illustrates not only superior 

classification accuracy but also highlights improvements in 

precision and recall, confirming the robustness and 

generalizability of the proposed model. The consistent 

performance gain across metrics emphasizes the advantage 

of combining lightweight deep feature extraction with 

ensemble-based classification techniques for real-time 

medical image analysis. 

5.4 Discussion 

The findings of this study demonstrate a strong alignment 

with prior research emphasizing the potential of lightweight 

deep learning models for medical image analysis. 

Compared to earlier efforts that relied solely on traditional 

CNNs or standalone MobileNet architectures [14], the 

proposed MobileNet combined with Random Forest 

classifier achieved superior accuracy and efficiency. The 

hybrid model effectively addressed the trade-off between 

computational cost and prediction reliability, a challenge 

that earlier models often struggled to balance. Unlike 

previous works where deep feature extractors either 

suffered from underfitting due to small datasets or required 

extensive fine-tuning [16], the integration of ensemble-

based classification offered a stable generalization 

capability even on limited samples, thus reinforcing the 

advantages suggested by contemporary ensemble learning 

studies [17]. 

The practical implications of the proposed system are 

significant. By achieving a real-time inference speed of 18 

milliseconds per image with an accuracy of 92.7%, the 

model becomes highly suitable for clinical deployments, 

particularly in emergency diagnostics and rural 

telemedicine settings where rapid decision-making is 

critical. Moreover, the model’s lightweight nature allows 

deployment on mobile or edge devices, opening new 

possibilities for fracture detection outside of conventional 

hospital environments. Such a scalable and accessible 

solution could substantially reduce diagnostic delays, 

enhance patient outcomes, and relieve burdens on 

specialized radiologists in high-volume medical centers. 

Nevertheless, certain limitations were identified during 

experimentation. While the model performed robustly 

across most classes, detection sensitivity for soft tissue-

related anomalies remained lower compared to clear bone 

fractures. This performance disparity may stem from the 

subtle nature of textural differences in soft tissue 

abnormalities, which require finer feature granularity than 

what lightweight networks currently capture. Additionally, 

the Random Forest classifier, despite improving robustness, 

introduces interpretability challenges when analyzing 

decision paths for complex cases. A further limitation 

concerns the reliance on a single publicly available dataset 

[22], which may not fully capture the imaging variability 

found across different equipment manufacturers and clinical 

settings. 

Building upon these observations, several future research 

directions are suggested. First, integrating attention 

mechanisms into MobileNet layers could enable dynamic 

focus on subtle features, potentially improving soft tissue 

detection accuracy. Second, incorporating multi-modal data, 

such as clinical history or multi-angle imaging, could 

enhance model robustness beyond single-view X-rays. 

Third, exploring explainable AI (XAI) techniques alongside 

Random Forest could offer better transparency into 

classification decisions, which is crucial for clinical trust 

and adoption. Finally, expanding evaluation across diverse, 

multi-institutional datasets would strengthen the model’s 

external validity and facilitate regulatory approvals for real-

world deployment. 

6. Conclusion 

This study proposed a hybrid deep learning framework 

integrating MobileNet feature extraction with Random 

Forest classification for real-time detection of bone, muscle, 

and nerve defects from X-ray images. The experimental 

results demonstrated that the proposed model achieved an 

accuracy of 92.7%, surpassing conventional CNN and 

standalone MobileNet approaches in both predictive 

performance and computational efficiency. By leveraging 

lightweight architectures and ensemble learning strategies, 

the system achieved real-time inference speeds suitable for 

clinical deployment without sacrificing diagnostic 

reliability. 
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The practical implications of the findings are substantial, 

particularly for point-of-care diagnostics, rural healthcare 

settings, and emergency clinical workflows where timely 

and accurate fracture detection is critical. The proposed 

solution not only reduces the dependency on expert 

radiologists but also enhances accessibility to advanced 

diagnostic tools in resource-constrained environments. Its 

adaptability to mobile and edge devices further underscores 

its real-world applicability across diverse healthcare 

infrastructures. 

Despite these promising outcomes, the study identified 

limitations such as lower recall in soft tissue defect 

classification and dependence on a single dataset for model 

validation. Future work will focus on integrating attention 

mechanisms to enhance subtle feature detection, adopting 

explainable AI methods for improved interpretability, and 

validating the model across multi-institutional datasets to 

ensure broader generalization. 

In conclusion, the hybrid MobileNet–Random Forest 

approach establishes a viable pathway toward building 

efficient, scalable, and accurate automated diagnostic 

systems for medical imaging. The study sets a foundation 

for further advancements in lightweight AI models capable 

of transforming the landscape of fracture detection and 

medical diagnostics at large. 
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