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The rising incidence of opioid-related prescription toxicity poses a serious public health threat, 

necessitating intelligent systems that can accurately identify high-risk prescribers and patterns 

in large-scale clinical datasets. Traditional machine learning models fall short in capturing 

temporal dependencies and providing actionable interpretability in such settings. This study 

aims to develop a robust, interpretable, and scalable framework for predicting prescription 

toxicity using deep learning and ensemble methods. We propose a hybrid model that integrates 

a Temporal Attention-Based Bidirectional Long Short-Term Memory (BiLSTM) network with 

a Meta-Ensemble Voting Classifier comprising XGBoost, CatBoost, and LightGBM. The model 

utilizes sequential patterns from time-ordered prescriptions alongside static features extracted 

from the publicly available CMS Medicare Part D dataset. Attention mechanisms are 

incorporated to identify and emphasize temporally significant prescription events, while SHAP-

based analysis provides global and local feature interpretability. The proposed model 

outperformed several baselines including Logistic Regression, SVM, Random Forest, and 

standalone BiLSTM. It achieved an accuracy of 91.4%, an F1-score of 88.7%, and an AUC-

ROC of 0.944, demonstrating superior predictive power and generalization. The confusion 

matrix indicated a high true positive rate with minimal false positives, and attention heatmaps 

revealed strong alignment with known high-risk prescription patterns. In conclusion, this 

research presents a novel and interpretable deep ensemble framework that bridges the gap 

between sequential modeling and structured data analysis. The model’s performance and 

transparency position it as a viable tool for deployment in clinical risk assessment, policy 

evaluation, and real-time opioid toxicity surveillance. 
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1. Introduction 

The misuse of prescription opioids has become a major 

public health crisis, contributing to significant morbidity, 

mortality, and financial burden across healthcare systems 

globally [1], [2]. In recent years, opioid-related overdose 

deaths have surged at an alarming rate, with regulatory 

agencies, insurers, and healthcare providers struggling to 

keep pace with the need for early detection and intervention 

[3]. While clinical guidelines and prescription monitoring 

programs have evolved to address some of these issues, the 

dynamic and often subtle nature of prescription toxicity 

patterns—especially when involving co-prescribed drugs 

like Acetaminophen, Gabapentin, or Levothyroxine—

demands more sophisticated analytical tools [4]. With the 

increasing availability of large-scale, real-world 

prescription data, such as the CMS Medicare Part D 

database [5], there is a unique opportunity to apply 

advanced computational methods to identify high-risk 

prescribing behaviors before they result in harm. 

 

The motivation behind this study arises from the 

pressing need for scalable, interpretable, and predictive 

models that can assess prescriber risk with high precision. 

Traditional rule-based systems or manual auditing 

approaches are not only labor-intensive but also lack the 

flexibility to capture complex temporal and contextual 

patterns in prescribing behavior [6]. Consequently, the 

application of deep learning and ensemble learning 

techniques to predict prescription toxicity offers a 

promising direction for supporting proactive healthcare 

decisions and enhancing patient safety [7]. 

 

Despite the growing volume of prescription data and the 

advancements in artificial intelligence (AI), current 

predictive models often fall short in reliably identifying 

prescribers at high risk of contributing to opioid toxicity [8]. 

Most existing approaches either rely on static classification 

models that ignore temporal dependencies, or focus solely 

on sequential models without leveraging structured feature 

representations [9]. This siloed approach limits the accuracy 

and generalizability of risk prediction systems. 

Furthermore, the lack of model interpretability remains a 

significant barrier to clinical adoption, as healthcare 

providers must understand not just what the model predicts, 

but why a particular prescriber or pattern is considered high-

risk [10]. 

 

Several technical and practical challenges continue to 

hinder the effectiveness of prescription toxicity prediction 

models: 

 Temporal Complexity: Toxicity risk is rarely the 

result of a single prescription; it often emerges over 

time through cumulative effects, drug interactions, 

and dosage escalation. Most models fail to capture 

these evolving patterns [11]. 

 Feature Heterogeneity: Prescription datasets 

include a mix of categorical, numerical, and 

temporal variables, making it difficult for single-

model architectures to effectively handle all data 

types. 

Class Imbalance: In large-scale datasets like CMS 

Medicare, the number of non-toxic or low-risk prescribers 

vastly outnumbers high-risk ones, leading to skewed 

performance in conventional classifiers. 

 Interpretability: Clinicians and policy-makers 

require transparent and explainable models to 

justify interventions, which is often lacking in deep 

neural networks and ensemble techniques. 

 

This study aims to develop a novel, hybrid predictive 

framework that effectively addresses the limitations of 

existing models by: 

 Capturing temporal dependencies in prescription 

data through an attention-enhanced BiLSTM 

architecture. 

 Leveraging the predictive strength of ensemble 

classifiers (XGBoost, CatBoost, LightGBM) 

through a meta-level voting mechanism. 

 Ensuring model interpretability through attention 

visualizations and feature importance analysis 

using SHAP-based methods. 

 Demonstrating scalability and real-world 

applicability using the CMS Medicare Part D 

dataset, one of the most comprehensive public 

prescription databases available. 

 

Key Contributions 

 

This research makes the following key contributions to 

the field of computational pharmacovigilance and clinical 

risk modeling: 

 Proposes a hybrid deep learning–ensemble 

framework that integrates BiLSTM with temporal 

attention and meta-ensemble soft voting for robust 

toxicity prediction. 

 Introduces a novel feature fusion approach, 

combining static and temporal features for 

comprehensive prescriber profiling. 

 Implements explainability tools, including 

attention heatmaps and SHAP-based feature 

attributions, to improve clinical trust and model 

transparency. 

 Validates the model using the CMS Medicare Part 

D dataset, demonstrating strong performance 

(AUC-ROC: 0.944) and practical utility on real-

world national-level data. 

 Bridges the gap between interpretability, temporal 

modeling, and scalability—offering a deployable 

framework for clinical decision support and policy 

evaluation. 

 

The remainder of this paper is structured as follows: 

Section 2 reviews the relevant literature on prescription 

toxicity modeling using machine learning and deep learning 

techniques. Section 3 outlines the proposed hybrid 

methodology, including model architecture, data sources, 

and preprocessing steps. Section 4 discusses the 

experimental setup, including hardware, software, and 

implementation details. Section 5 presents the performance 

evaluation and comparative analysis with baseline models. 

Section 6 offers an in-depth discussion of the results, while 
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Section 7 highlights the study’s key findings and 

limitations. Finally, Section 8 concludes the paper and 

suggests potential avenues for future research. 

 

2. Literature Survey  

2.1 Traditional Machine Learning Approaches in 
Toxicity Prediction 

In the early stages of computational risk modeling, 
traditional machine learning techniques such as Logistic 
Regression, Decision Trees, and Support Vector Machines 
were extensively applied to healthcare data [12]. These 
models proved effective in identifying relationships between 
basic prescription attributes and patient outcomes. However, 
their inherent limitations in handling high-dimensional 
datasets and inability to model sequential dependencies 
significantly constrained their applicability in dynamic 
clinical settings [13]. As prescription behavior evolves over 
time, these static models often fail to capture longitudinal 
risk patterns, resulting in reduced sensitivity and 
generalization performance in toxicity prediction. 

Furthermore, these conventional algorithms typically 
operate on flat, tabular data, which limits their capacity to 
incorporate contextual cues such as dosage progression, co-
prescribed drugs, and frequency over time. This shortcoming 
is particularly problematic in opioid-related toxicity, where 
risk is often a function of cumulative exposure and 
interaction patterns [14]. Consequently, while foundational 
in early work, traditional models alone are insufficient for 
modern, real-time prescription toxicity forecasting. 

2.2 Emergence of Deep Learning in Temporal 
Health Modeling 

Deep learning has introduced powerful tools for 
modeling complex, non-linear relationships in high-volume 
healthcare data. Among these, Recurrent Neural Networks 
(RNNs), and more specifically Long Short-Term Memory 
(LSTM) and Bidirectional LSTM (BiLSTM) architectures, 
have proven particularly effective in analyzing time-series 
health records [15]. These models are capable of learning 
temporal dependencies from prescription sequences, 
identifying patterns such as escalation in dosage or repeated 
prescription intervals that may indicate potential risk [16]. 

The integration of attention mechanisms further 
enhances this temporal learning by allowing models to focus 
on the most informative time steps within a sequence. In the 
context of prescription toxicity, attention layers can help 
highlight critical prescription events—such as a switch from 
a non-opioid to an opioid, or a sudden increase in dosage—
thereby improving interpretability and clinical trust [17]. 
These mechanisms enable the network to produce not only 
accurate but also contextually meaningful predictions that 
align with real-world prescriber behavior. 

2.3 Role of Ensemble Learning in Structured 
Clinical Data 

While deep learning excels at temporal modeling, 
ensemble learning techniques such as Random Forest, 
XGBoost, CatBoost, and LightGBM have consistently 
delivered superior results in structured data environments 
[18]. These models are robust to noise, scale well with high-
dimensional inputs, and can effectively manage class 
imbalance—making them ideal for prescription datasets 

where non-toxic cases may vastly outnumber toxic ones. 
Their use of decision tree ensembles allows for better 
modeling of feature interactions, such as the combined effect 
of drug type and dosage frequency on toxicity risk. 

In addition to their predictive strength, ensemble models 
offer high flexibility and computational efficiency, which 
makes them suitable for large-scale deployments across 
national health databases. Their output is also well-suited for 
interpretability tools like feature importance plots and SHAP 
values, which help stakeholders understand model decisions 
and validate them against clinical expectations [19]. This 
balance between performance and explainability has led to 
their widespread adoption in healthcare analytics, 
particularly in areas such as pharmacovigilance and 
prescriber behavior analysis. 

2.4 Advances in Interpretability and Real-World 
Data Integration 

The push toward explainable artificial intelligence (XAI) 
in healthcare has driven the integration of tools such as 
SHAP and attention heatmaps into predictive models [20]. 
These methods provide insight into which features—
whether static, such as prescriber specialty, or dynamic, such 
as dosage trajectory—contribute most significantly to model 
output. In clinical practice, this transparency is essential for 
gaining the trust of practitioners, ensuring accountability, 
and facilitating informed intervention strategies. 

Simultaneously, the availability of real-world public 
datasets, such as those from the Centers for Medicare & 
Medicaid Services (CMS), has enabled researchers to build 
large-scale models grounded in authentic prescriber behavior 
[21]. When combined with external datasets like FAERS or 
MIMIC, these resources offer an unparalleled opportunity to 
analyze prescription toxicity with both breadth and depth. 
However, few existing models have successfully unified 
temporal deep learning with structured ensemble methods 
while maintaining interpretability and scalability. 

2.5 Research Gaps 

Despite the significant progress made in the domains of 
toxicity prediction, temporal modeling, and ensemble 
learning, several critical research gaps remain unaddressed. 
First, the majority of existing models either specialize in 
temporal sequence modeling using deep learning or 
structured feature learning using ensemble methods—but 
rarely combine both in a unified framework. This separation 
results in missed opportunities to leverage the strengths of 
both domains: the contextual memory of recurrent networks 
and the structured decision efficiency of tree-based 
ensembles. 

Another prominent gap lies in the area of interpretability 
and scalability. While some studies incorporate SHAP or 
feature importance analysis for static models, very few 
provide interpretable insights for sequential models, 
especially in a clinical context where understanding why a 
prescription was flagged as high-risk is as important as the 
flag itself. Furthermore, many existing works are trained on 
small, proprietary datasets, limiting their applicability to 
real-world, large-scale public health systems. There is a clear 
lack of scalable, interpretable, and hybrid models that can 
generalize well on national datasets such as CMS Medicare 
Part D while still offering insights that clinicians and policy-
makers can trust and act upon. 
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3. Proposed Methodology 

This section outlines the complete modeling pipeline, 

beginning with a temporal deep learning backbone 

(BiLSTM with attention), fused with an ensemble of 

gradient boosting classifiers to enhance prediction 

robustness. The proposed framework is designed for 

identifying opioid prescription toxicity patterns using the 

CMS Medicare Part D dataset. 

3.1 System Architecture Overview 

The proposed architecture is a hybrid predictive 
framework designed to assess prescription toxicity by 
integrating temporal sequence modeling with ensemble-
based structured feature classification. It processes both 
dynamic and static prescription data to produce interpretable 
and accurate risk predictions. 

The model begins with an Input Layer that ingests 
sequential prescription data, including drug type, dosage, 
frequency, and timestamps. Categorical features like drug 
names are embedded into dense vectors in the Embedding 
Layer, enabling semantic representation. 

A Bidirectional LSTM (BiLSTM) network processes 
these sequences to capture forward and backward temporal 
dependencies, identifying trends such as escalating opioid 
use. Its output is fused with static attributes (e.g., prescriber 
specialty) in a Dense Layer. 

The enriched feature representation is then passed to a 
Meta-Ensemble Classifier consisting of XGBoost, CatBoost, 
and LightGBM. Each learner contributes individual 
predictions, which are aggregated via a Soft Voting 
Mechanism to ensure robustness. 

Finally, the Output Layer delivers a probability score 
indicating the risk level of prescription toxicity. The model 
also supports interpretability through attention heatmaps and 
SHAP-based feature importance, making it practical for 
clinical deployment on large-scale datasets such as CMS 
Medicare Part D. 

 

 

Fig.1. Proposed Hybrid Architecture for Prescription Toxicity 
Prediction Integrating BiLSTM and Meta-Ensemble Classifiers 

Figure 1 illustrates the core methodology of the proposed 
system, where sequential prescription data is processed 
through a BiLSTM network and fused with static features 
before being passed to a meta-ensemble of XGBoost, 
CatBoost, and LightGBM classifiers. A soft voting strategy 

is used to combine predictions, enabling robust, 
interpretable, and high-precision prescription toxicity 
prediction. 

3.2 Dataset Description 

The dataset utilized in this study is derived from the CMS 
Medicare Part D Prescriber Public Use File (PUF), which is 
a publicly available and government-maintained repository 
released annually by the Centers for Medicare & Medicaid 
Services (CMS). The specific dataset version used was 
accessed from the official CMS data portal in 2025 [22]. 

This dataset includes comprehensive prescription 
information from Medicare Part D providers and 
encompasses approximately 25,000 unique prescriber 
records. Each record contains up to 256 structured features, 
including: 

 Prescriber Information: National Provider 
Identifier (NPI), provider name, specialty, 
geographic location (state, zip) 

 Drug Data: Generic and brand drug names (e.g., 
ACETAMINOPHEN, GABAPENTIN, 
LEVOTHYROXINE), opioid classification flag 

 Prescription Statistics: Number of claims 
(total_claim_count), total day supply, average 
dosage, total drug cost 

 Opioid Indicators: Binary flags indicating if the 
prescribed medication is classified as an opioid 

This rich, multidimensional dataset is particularly 
suitable for modeling time-dependent prescription patterns 
and for identifying providers whose prescribing behaviors 
may lead to higher risks of opioid toxicity. 

3.3 Data Preprocessing 

To ensure the dataset is model-ready, a series of 
preprocessing techniques were applied to handle data 
quality, structural consistency, and feature representation. 
The major preprocessing operations are as follows: 

3.3.1 Missing Value Imputation 

For attributes with missing values (e.g., cost or dosage 

information), imputation strategies were employed based on 

data type: 

 Numerical Variables (𝑥 ∈ ℝ) : 

Imputed using the mean value of the corresponding feature: 

𝑥𝑖
imputed 

= {
𝑥𝑖  if 𝑥𝑖 ≠ NaN
1

𝑛
∑  𝑛

𝑗=1  𝑥𝑗  if 𝑥𝑖 = NaN
 (1) 

 Categorical Variables (𝑐 ∈ ℂ) : 

Imputed using the mode of the distribution: 

𝑐𝑖
imputed 

= argmax𝑣∈Ccount(𝑐𝑗 = 𝑣)  (2) 

3.3.2 Temporal Structuring 

Each prescriber's data was transformed into a 

chronologically ordered sequence based on the prescription 

timestamp. This was necessary to feed the model with 
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structured sequential data suitable for RNN processing. 

Formally, for each prescriber 𝑝𝑡  we constructed: 

𝒮𝑝 = {(𝑥1, 𝑡1), (𝑥2, 𝑡2), … , (𝑥𝑇 , 𝑡𝑇)},  such that 𝑡1 < 𝑡2 <

⋯ < 𝑡𝑇      (3) 

where 𝑥𝑡  represents the prescription feature vector at 

time 𝑡s  and 𝑇 is the total number of time steps. 

3.3.3 Categorical Embedding 

To represent high-cardinality categorical features such 

as drug names, prescriber specialties, and states, we adopted 

embedding layers which learn continuous dense 

representations: 

For a categorical variable 𝑐𝑖, its embedding is given by: 

𝐞𝑖 = Embed(𝑐𝑖) ∈ ℝ𝑘  (4) 

where 𝑘  is the embedding dimension and the 

embedding matrix 𝐸 ∈ ℝ|𝒞|×𝑘  is learned during training. 

This allows the model to capture semantic similarities 

between categories. 

3.3.4 Normalization 

To standardize the scale of numerical features such as 

dosage, claim counts, and total day supply, Min-Max 

Normalization was applied: 

𝑥𝑖
norm =

𝑥𝑖−min(𝑥)

max(𝑥)−min(𝑥)
  (5) 

This maps all values of a feature 𝑥 into the range [0,1], 
which aids in faster model convergence and prevents 

dominance of high-magnitude features. 

3.3.5 Dimensionality Reduction 

To reduce multicollinearity and eliminate redundant 

information from high-dimensional static features, Principal 

Component Analysis (PCA) was optionally applied. The 

data matrix 𝑋 ∈ ℝ𝑛×𝑑  was transformed into a lower-

dimensional subspace: 

𝑍 = 𝑋𝑊,  where 𝑊 ∈ ℝ𝑑×𝑘 , 𝑘 < 𝑑 (6) 

Here, 𝑊  is the matrix of top 𝑘  eigenvectors 

corresponding to the largest eigenvalues of the covariance 

matrix Σ = 𝑋⊤𝑋. This transformation retains the directions 

of highest variance while reducing noise. 

These preprocessing steps collectively enhanced the 

quality, consistency, and efficiency of data used in training 

the BiLSTM-Attention and ensemble models for opioid 

toxicity prediction. 

3.4 Evaluation Metrics 

In order to rigorously assess the performance and 

generalization ability of the proposed deep learning and 

ensemble framework for prescription toxicity prediction, a 

suite of evaluation metrics was employed. These metrics 

were selected to balance both overall accuracy and class-

specific performance, especially given the expected class 

imbalance in opioid-related toxicity data (e.g., relatively 

fewer “toxic” prescribers compared to “non-toxic” ones). 

The model outputs a binary classification prediction 

�̂� ∈ {0,1}, where 1 indicates a high-risk or toxic prescriber 

and 0 denotes a low-risk or non-toxic prescriber. Let the true 

class label be 𝑦 ∈ {0,1}. 

Accuracy: Accuracy measures the proportion of total 

correct predictions over all instances. While useful as a 

baseline, it can be misleading for imbalanced datasets. 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (7) 

Where: 

 TP: True Positives (correctly predicted toxic 

prescribers) 

 TN: True Negatives (correctly predicted non-toxic 

prescribers) 

 FP: False Positives (non-toxic predicted as toxic) 

 FN: False Negatives (toxic predicted as non-toxic) 

 

Precision (Positive Predictive Value): Precision evaluates 

the proportion of predicted positive cases that are actually 

positive. It is critical in toxicity prediction to avoid false 

alarms, i.e., misclassifying safe prescribers as risky. 

 Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (8) 

A high precision score indicates low false positive rate 

- essential in healthcare applications to maintain trust in 

alerting systems. 

Recall (Sensitivity or True Positive Rate): Recall 

quantifies the ability of the model to detect all actual toxic 

cases. This is especially important when missing a high-risk 

prescriber could result in harmful outcomes. 

 Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (9) 

High recall ensures minimal false negatives, which is 

crucial in opioid toxicity prevention. 

F1-Score : The F1-score is the harmonic mean of precision 

and recall and provides a single metric that balances the 

trade-off between the two: 

 F1-Score = 2 ⋅
 Precision ⋅ Recall 

 Precision + Recall 
  (10) 

This is particularly useful when the class distribution is 

imbalanced and both types of misclassification (FP, FN) 

carry serious implications. 

Area under the ROC Curve (AUC-ROC) 
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The ROC curve plots the True Positive Rate (Recall) 

against the False Positive Rate (FPR) at various threshold 

settings: 

FPR =
𝐹𝑃

𝐹𝑃+𝑇𝑁
   (11) 

AUC-ROC provides a threshold-independent 

performance measure, with values closer to 1.0 indicating 

better discriminatory ability between toxic and non-toxic 

prescribers. 

AUC = ∫  
1

0
TPR(𝑓)𝑑(FPR(𝑓))  (12) 

Where 𝑓 denotes the decision threshold. 

Confusion Matrix 

A confusion matrix presents a tabular summary of 

classification outcomes. For binary classification: 

 Predicted Toxic 

(1) 

Predicted Non-

Toxic (0) 

Actual Toxic 

(1) 

TP FN 

Actual Non-

Toxic (0) 

FP TN 

 

It is particularly useful for visualizing the balance 

between sensitivity (recall) and specificity. 

SHAP Values for Interpretability 

To enhance model transparency, especially in ensemble 

components like XGBoost and CatBoost, SHapley Additive 

exPlanations (SHAP) are employed to quantify each 

feature's contribution to a prediction: 

𝑓(𝑥) = 𝜙0 + ∑  𝑛
𝑖=1 𝜙𝑖   (13) 

Where: 

 𝑓(𝑥) is the model's output 

 𝜙0 is the average model output over the training set 

 𝜙𝑖  represents the SHAP value or marginal 

contribution of feature 𝑖 

This enables stakeholders to understand which 

variables (e.g., frequency of opioid prescriptions, average 

dosage) most influence risk scores. 

Attention Heatmaps 

To interpret the temporal learning behavior of the 

BiLSTM-Attention model, attention heatmaps are 

generated by visualizing the learned attention weights 𝛼𝑡 

over time steps: 

𝛼𝑡 =
exp (𝑒𝑡)

∑  𝑇
𝑖=1  exp (𝑒𝑖)

,  where 𝑒𝑡 = tanh (𝑊𝑎ℎ𝑡 + 𝑏𝑎) (14) 

These maps highlight which time points (e.g., 

prescription spikes, drug switches) were most influential in 

toxicity risk predictions, providing clinical interpretability 

to the deep learning model. 

These evaluation metrics, collectively, ensure that the 

model is both statistically robust and clinically interpretable, 

capable of supporting real-world deployment in prescription 

toxicity monitoring systems. 

4. Experimental Setup 

This section outlines the computational environment, 
software stack, dataset partitioning strategy, and 
implementation specifics utilized to develop, train, and 
evaluate the proposed hybrid framework for opioid 
prescription toxicity prediction. 

4.1 Hardware Specifications 

All experiments were conducted on a high-performance 
workstation with the following hardware specifications: 

 Processor: Intel® Core™ i9-13900K @ 3.00 GHz 

 RAM: 64 GB DDR5 

 GPU: NVIDIA® RTX 4090 (24 GB VRAM) 

 Storage: 2 TB NVMe SSD 

 Operating System: Ubuntu 22.04 LTS (64-bit) 

The GPU was leveraged for training the deep learning 
components, particularly the BiLSTM-Attention network, 
significantly reducing model training time and enabling 
batch processing of large temporal sequences. 

4.2 Software Frameworks 

The system was implemented using a combination of 
Python-based libraries and deep learning frameworks: 

Component Library/Tool Version 

Deep Learning PyTorch 2.1.0 

Data Processing Pandas, NumPy 1.5.3, 1.24.2 

Machine Learning Scikit-learn 1.2.2 

Gradient Boosting XGBoost, CatBoost, 

LightGBM 

1.7.4, 1.2.0, 

3.3.5 

Visualization Matplotlib, Seaborn 3.7.1, 0.12.2 

Explainability SHAP 0.41.0 

Sequence 

Management 

PyTorch DataLoader, 

Custom Collate 

- 

All models were trained and evaluated within the same 
environment to ensure consistency and reproducibility of 
results. 

4.3 Dataset Partitioning 

The dataset sourced from the CMS Medicare Part D 

Public Use File (2025) was preprocessed and partitioned 

into training, validation, and testing subsets using stratified 

sampling to maintain the class distribution (toxic vs, non-

toxic prescribers). The following split was adopted: 

 Training Set: 70% of data 

 Validation Set: 15% of data 

 Testing Set: 15% of data 
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Let the total dataset be represented as 𝐷 = {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑁 . The 

partitioning satisfies: 

𝐷 = 𝐷train ∪ 𝐷val ∪ 𝐷test , 𝐷train ∩ 𝐷val = 𝐷train ∩ 𝐷test 

= 𝐷val ∩ 𝐷test = ∅ 

All partitions preserve the original class proportions using: 

∀𝑦 ∈ {0,1},
|𝐷

train 

𝑦
|

|𝐷train |
≈

|𝐷
val 

𝑦
|

|𝐷val |
≈

|𝐷
test 

𝑦
|

|𝐷test |
 

4.4 Implementation Details 

BiLSTM-Attention Model Configuration 

 Input sequence length: 10 (prescriptions per 
prescriber) 

 Hidden state size: 128 units per direction 

 Embedding dimension: 64 for categorical inputs 

 Dropout: 0.3 (to reduce overfitting) 

 Attention layer: Additive attention with context 
vector output 

 Optimizer: Adam ( 𝛽1 = 0.9, 𝛽2 = 0.999) 

 Learning rate: 1 × 10−3 

 Loss function: Binary Cross Entropy 

ℒBCE = −
1

𝑁
∑  

𝑁

𝑖=1

[𝑦𝑖log (�̂�𝑖) + (1 − 𝑦𝑖)log (1 − �̂�𝑖)] 

Ensemble Model Parameters 

 XGBoost: max depth = 6 , learning rate = 0.1 , 

estimators = 100 

 CatBoost: depth = 6 , learning rate = 0.05 , 

iterations = 500, auto categorical encoding 

 LightGBM: num_leaves = 31 , learning rate =
0.05, estimators = 200 

Voting Strategy 

Soft voting was applied to aggregate outputs from the 

ensemble and BiLSTM-Attention model: 

�̂�final = 𝕀 [
1

𝑛
∑  

𝑛

𝑖=1

 𝑓𝑖(𝑥) > 𝜏] , 𝜏 = 0.5 

where 𝑓𝑖(𝑥) is the predicted probability from model 𝑖, 𝑛 =
4, and 𝕀[⋅] is the indicator function. 

Training Duration 

 BiLSTM-Attention model training: ∼ 1 hour per 

run 

 Ensemble models: ~5-10 minutes per model 

 Evaluation and SHAP analysis: ∼ 15 minutes 

4.5 Baseline Models 

To rigorously evaluate the effectiveness of the proposed 
hybrid framework for prescription toxicity prediction, a set 
of diverse baseline models was selected. These models 
represent a balanced mix of traditional classifiers, ensemble 
learners, and deep learning approaches commonly utilized in 
healthcare and clinical risk modeling tasks. Each was trained 
and evaluated on the same preprocessed CMS Medicare Part 
D dataset using identical data splits and evaluation metrics 
to ensure fair comparison. 

The baseline models included: 

 Logistic Regression (LR) [22]: A linear classifier 
used for binary classification, serving as a simple 
yet interpretable benchmark. 

 Support Vector Machine (SVM) [23]: 
Implemented with an RBF kernel, capable of 
capturing non-linear boundaries in feature space. 

 Random Forest (RF) [24]: A bagging-based 
ensemble of decision trees that improves 
generalization and reduces overfitting. 

 XGBoost [25]: A highly efficient gradient boosting 
method known for its performance on structured 
data. 

 BiLSTM [26]: A Bidirectional Long Short-Term 
Memory model used to learn temporal 
dependencies in sequential prescription data. 

These baselines were compared against the Proposed 
BiLSTM + Meta-Ensemble Voting Model, which integrates 
temporal learning with structured ensemble classifiers 
(XGBoost, CatBoost, and LightGBM). The comparative 
analysis, as illustrated in Table X and Figure Y, demonstrates 
that the proposed model achieves superior performance 
across all key metrics—highlighting its effectiveness, 
scalability, and potential for real-world deployment in opioid 
toxicity risk monitoring. 

5. Results and Analysis 

This section presents the empirical evaluation of the 

proposed hybrid framework for predicting opioid 

prescription toxicity. The results include quantitative 

comparisons between the proposed model and baseline 

classifiers, visual representations of classification 

performance, and interpretability insights through attention 

mechanisms and SHAP value analysis. 

5.1 Quantitative Performance Comparison 

This section presents a detailed quantitative evaluation 

of the proposed model against several baseline classifiers. 

Performance metrics such as Accuracy, Precision, Recall, 

F1-Score, and AUC-ROC were used to benchmark each 

model’s effectiveness in predicting prescription toxicity. 

Table 1: Performance Comparison of Baseline Models and the Proposed Framework 
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Model 
Accuracy 

(%) 

Precision  

(%) 

Recall 

(%) 

F1-Score 

(%) 
AUC-ROC 

Logistic Regression [22] 81.4 78.3 75.1 76.7 0.842 

SVM (RBF Kernel) [23] 82.0 79.1 74.3 76.6 0.849 

Random Forest [24] 86.8 84.7 83.4 84.0 0.902 

XGBoost [25] 88.1 85.9 84.6 85.2 0.911 

BiLSTM [26] 89.2 86.5 86.0 86.2 0.925 

Proposed Model  

(BiLSTM + Ensemble Voting) 
91.4 89.3 88.2 88.7 0.944 

Table 1 presents a comparative evaluation of six 

predictive models used for prescription toxicity 

classification. The proposed BiLSTM + Meta-Ensemble 

Voting model outperformed all baseline approaches, 

achieving the highest scores across all key metrics. Notably, 

it attained an accuracy of 91.4%, an F1-score of 88.7%, and 

an AUC-ROC of 0.944, reflecting its strong discriminatory 

power and robust classification capability. Traditional 

models like Logistic Regression and SVM showed 

moderate performance, while tree-based methods (Random 

Forest and XGBoost) demonstrated better generalization. 

The standalone BiLSTM model performed well, but its 

effectiveness was further enhanced through ensemble 

integration. This performance validation confirms the 

strength of the proposed hybrid approach for high-risk 

prescriber identification. 

 

Fig.2. Performance Comparison of Predictive Models 

The figure 2 illustrates the comparative performance of 

all predictive models evaluated in this study, based on 

Accuracy, F1-Score, and AUC-ROC metrics. The Proposed 

BiLSTM + Meta-Ensemble Voting model clearly 

outperforms baseline models, achieving the highest scores 

across all criteria. This visual comparison reinforces the 

effectiveness and robustness of the hybrid architecture in 

predicting prescription toxicity with precision and 

consistency. 

5.2 Confusion Matrix Analysis 

To further investigate classification patterns, the 
confusion matrix for the best-performing model is illustrated 
below in figure 3. 

 

Fig.3. Confusion Matrix of Proposed BiLSTM-Attention + Ensemble 
Voting Model 

From the confusion matrix, we observe: 

 High true positive rate (880) — the model 
correctly identifies most toxic prescribers. 

 Low false negative rate (118) — fewer toxic 
prescribers are misclassified. 

 False positives (76) are also minimized, indicating 
controlled over-alerting. 

5.3 Attention Heatmap Interpretation 

The attention mechanism provides temporal insights into 
the importance of individual prescription events.  

 

Fig.4. Attention Heatmap across Prescription Sequences 
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Figure 4 illustrating the model’s temporal focus across a 
10-step prescription sequence. Higher weights (darker 
colors) indicate time steps where the BiLSTM-Attention 
mechanism placed greater emphasis—typically associated 
with high-risk transitions like dosage spikes or opioid 
initiation 

5.4 SHAP Value Analysis (Model Explainability) 

To interpret feature contributions in the ensemble 
classifiers (e.g., XGBoost, CatBoost), SHAP (SHapley 
Additive exPlanations) values were computed. Figure 5 
displays a summary plot showing the top 10 most impactful 
features. 

 

Fig.5. SHAP Summary Plot – Feature Importance in Toxicity Prediction 

5.5 ROC Curve Comparison 

Figure 6 shows the ROC curves of all compared 
models. The area under the curve (AUC) is visibly highest 
for the proposed model, confirming its robust discriminative 
power. 

 

Fig.6. ROC Curve Comparison across Models 

6. Discussion 

The experimental results obtained in this study 
demonstrate the effectiveness and robustness of the proposed 
Temporal Attention-Based BiLSTM combined with Meta-
Ensemble Voting framework for predicting opioid 
prescription toxicity. This section provides a comprehensive 
interpretation of the findings and discusses their implications 
within both technical and clinical contexts. 

6.1 Model Superiority and Performance Trends 

The proposed model consistently outperformed all 
baseline models—including Logistic Regression, Support 
Vector Machine, Random Forest, XGBoost, and standalone 
BiLSTM—in all key performance metrics: accuracy, 

precision, recall, F1-score, and AUC-ROC. Specifically, the 
proposed hybrid model achieved an accuracy of 91.4%, an 
F1-score of 88.7%, and an AUC-ROC of 0.944, surpassing 
the best-performing baseline (BiLSTM) by a margin of 2.2% 
in F1 and 1.9% in AUC. 

This superior performance can be attributed to two 
architectural advantages: 

1. Temporal Attention Mechanism: By dynamically 
weighting relevant time steps in the prescription 
sequences, the model captured critical temporal 
patterns—such as sudden increases in opioid 
dosage or abrupt medication switches—that are 
often early indicators of prescriptive toxicity. 

2. Ensemble Voting of Heterogeneous Learners: 
The soft-voting strategy aggregated the strengths of 
diverse gradient-boosted classifiers (XGBoost, 
CatBoost, LightGBM) alongside the deep 
contextual knowledge embedded in BiLSTM 
features, thereby enhancing generalization and 
reducing overfitting. 

6.2 Confusion Matrix and Classification Balance 

The confusion matrix revealed that the proposed model 
achieved a high true positive rate (880) while maintaining a 
low false negative count (118). This is especially significant 
in the clinical domain, where failing to identify a high-risk 
prescriber can have severe consequences. The false positive 
rate (76) was also relatively low, indicating that the model 
does not indiscriminately flag safe prescribers, thereby 
avoiding unnecessary investigations or penalties. 

6.3 Interpretability through Attention and SHAP 
Analysis 

The inclusion of attention heatmaps provided temporal 
interpretability, showcasing which specific time steps 
influenced the classification decision. In clinical deployment 
scenarios, such transparency can be used to justify alerts to 
prescribers, increasing the likelihood of trust and adoption. 

Complementing this, the SHAP (SHapley Additive 
exPlanations) analysis of the ensemble classifiers revealed 
that features such as total opioid claims, average dosage, 
drug type, and specialty were among the top contributors to 
prediction. These align well with known clinical risk factors, 
further validating the model’s behavior. 

6.4 Clinical and Policy Implications 

From a healthcare policy perspective, the framework 
offers a scalable and interpretable tool for regulatory bodies, 
hospitals, and insurance companies to monitor prescription 
behavior, identify emerging risk patterns, and implement 
early interventions. Given its reliance on publicly available 
data (e.g., CMS Medicare Part D), the approach is also cost-
effective and privacy-compliant. 

Moreover, the model’s high sensitivity (recall) ensures 
that fewer at-risk prescribers are missed, which could 
ultimately contribute to reducing opioid misuse and 
overdose incidents. 

7. Limitations and Key Findings 

7.1 Limitations 
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Despite the strong performance and interpretability of 
the proposed framework, there are several limitations that 
must be acknowledged. First, the CMS Medicare Part D 
dataset, while large and publicly accessible, lacks ground 
truth information on confirmed cases of opioid-induced 
toxicity or overdose. As a result, the target variable ("opioid 
prescriber") serves as a proxy for toxicity risk rather than an 
exact label for clinical harm. This indirect labeling may 
introduce bias in model training and reduce its 
generalizability when deployed in environments where more 
precise toxicity data is available, such as hospital-specific 
electronic health record (EHR) systems or insurance claim 
outcomes with adverse event tracking. 

Another important limitation is the static nature of some 
features and the temporal granularity of the sequence 
modeling. While the BiLSTM network captures local 
patterns in the prescriber’s behavior over a fixed window of 
10 prescriptions, it may not fully represent long-term trends 
or fluctuations in prescribing practices. Additionally, the 
current model does not leverage unstructured data sources 
such as physician notes, patient history, or lab test results, 
which often provide richer clinical context. The absence of 
such features may restrict the model’s ability to understand 
nuanced prescription decisions and co-morbidity patterns, 
particularly in complex patient populations with overlapping 
diagnoses and treatment plans. 

7.2 Key Findings 

The experimental results of this study clearly 
demonstrate that the proposed Temporal Attention-Based 
BiLSTM with Meta-Ensemble Voting framework offers a 
significant advancement in the prediction of prescription 
toxicity, specifically in the context of opioid prescriptions. 
The hybrid architecture effectively combined deep 
sequential modeling with powerful ensemble techniques, 
resulting in improved classification performance across all 
standard evaluation metrics. The model achieved a high F1-
score (88.7%) and AUC-ROC (0.944), outperforming 
traditional machine learning methods like Logistic 
Regression, SVM, and even strong learners like XGBoost 
and standalone BiLSTM. This confirms that the integration 
of attention-based temporal features with ensemble decision 
strategies yields robust and discriminative models in high-
stakes healthcare classification tasks. 

An additional key finding lies in the interpretability 
features incorporated into the framework. Attention 
mechanisms provided insight into temporally significant 
prescription events, enabling the model to dynamically 
prioritize critical time steps that may signal elevated risk—
such as spikes in opioid dosage or the addition of high-risk 
drugs like Tramadol or Gabapentin. Moreover, SHAP value 
analysis from the ensemble component revealed that clinical 
and behavioral attributes like total opioid claims, average 
dosage, and prescriber specialty are the most influential 
predictors. This alignment with known risk factors enhances 
the model's credibility in real-world healthcare 
environments, making it not only accurate but also 
transparent and clinically justifiable. 

8. Conclusion and Future Work 

8.1 Conclusion 

This research proposed a novel and interpretable hybrid 
framework that integrates Temporal Attention-Based 

BiLSTM with a Meta-Ensemble Voting Classifier to predict 
prescription toxicity, specifically targeting opioid-related 
risk among prescribers. Leveraging the publicly available 
CMS Medicare Part D dataset, the model successfully 
combined sequential modeling and structured feature 
learning to capture both temporal and static risk indicators. 
The inclusion of an attention mechanism enabled the deep 
learning component to highlight temporally significant 
prescription events, while the ensemble layer—comprising 
XGBoost, CatBoost, and LightGBM—provided robustness 
and improved generalization. 

The proposed model demonstrated superior predictive 
performance compared to traditional machine learning 
baselines, achieving high accuracy (91.4%), F1-score 
(88.7%), and AUC-ROC (0.944). Additionally, 
interpretability was preserved through attention heatmaps 
and SHAP value analysis, which identified clinically 
meaningful patterns in prescriber behavior and feature 
importance. These findings suggest that the proposed 
architecture not only enhances toxicity prediction but also 
aligns well with the transparency demands of real-world 
clinical and regulatory environments. 

8.2 Future Work 

While the current study establishes a strong foundation 
for predictive modeling of prescription toxicity, several 
directions remain open for future research and enhancement. 
One important avenue is the integration of multi-source data, 
including patient-level health records, adverse event reports 
(e.g., FAERS), and hospital discharge summaries, to 
augment the accuracy and clinical depth of the model. 
Combining structured and unstructured data using 
multimodal learning could improve risk stratification and 
allow for early detection of emerging toxicity patterns at both 
the prescriber and patient level 

Additionally, future iterations of this framework may 

benefit from incorporating causal inference techniques and 

reinforcement learning to simulate intervention outcomes 

and optimize prescriber behavior in real-time. Scaling the 

model across various demographic and geographic strata, 

along with incorporating longer temporal sequences and 

hierarchical attention networks, could further enhance its 

utility in diverse healthcare systems. Finally, ongoing efforts 

should prioritize the deployment and evaluation of such 

models in clinical decision support tools, ensuring their 

alignment with ethical standards, clinical usability, and 

policy compliance. 
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