

https://www.macawpublications.com/Journals/index.php/FCR 20

Research Article

Blockchain Split-Join Architecture: A Novel

Framework for Improved Transaction Processing

1 Leela Mahesh Reddy, 2 K. Madhavi

1Masters of Information Technology (Enterprise Management) , University of South Australia, Australia.
2Professor, CSE Department, RGMCET, Nandyal, Andhra Pradesh, India

*Corresponding Author: madhavi@gmail.com

Article Info Abstract

Article History
Received: 02/03/2023

Revised: 11/07/2023

Accepted:22/09/2023

Published :30/09/2023

The rapid expansion of blockchain technology necessitates innovative solutions to

enhance transaction processing efficiency and scalability. This paper presents the

Blockchain Split-Join Architecture, a novel framework designed to significantly improve

transaction processing. By partitioning the blockchain into smaller, manageable

segments (splits) that operate in parallel, this architecture reduces processing latency and

increases throughput. These segments are subsequently merged (joined) to maintain data

integrity and consistency across the network. Our framework addresses key challenges

such as scalability, resource optimization, and transaction speed, making it ideal for

high-demand applications. Through rigorous analysis and simulations, we demonstrate

that the Split-Join Architecture outperforms traditional blockchain systems in terms of

transaction processing time and network efficiency. This research offers a robust solution

for the development of more scalable and efficient decentralized applications, providing

valuable insights into advanced blockchain and distributed system design.

Keywords: Blockchain, Split-Join Architecture, Transaction Processing, Scalability,

Data Integrity, Decentralized Applications

 Copyright: © 2023. This article is an open-access article distributed under the terms and

conditions of the Creative Commons Attribution (CC BY 4.0) license.

1. Introduction

Banana crops are a critical source of food and income

for millions globally, particularly in developing countries.

However, banana production faces a significant threat from

various diseases. These diseases not only cause substantial

yield losses but also impact food security and livelihoods.

Traditional methods for disease detection in banana crops

often rely on visual inspection by farmers. While this

approach offers some advantages in terms of simplicity, it

suffers from several limitations.

Firstly, visual inspection is subjective and prone to

human error, especially in the early stages of disease

development when symptoms can be subtle. Secondly, it

requires trained personnel and can be time-consuming,

especially for large plantations. Finally, reactive disease

management strategies, implemented only after visible

symptoms appear, often prove insufficient to contain

outbreaks and minimize losses.

Recent advancements in machine learning and sensor

technology offer promising avenues for addressing these

limitations. Image-based disease detection approaches have

emerged as a powerful tool, allowing for automated and

potentially more accurate identification of diseases.

However, relying solely on visual information can be

Frontiers in Collaborative Research
Volume 1, Issue 3, September 2023, Pp:20-29

© 2023, All Rights Reserved @ Macaw Publications

https://www.macawpublications.com/Journals/index.php/FCR
https://creativecommons.org/licenses/by/4.0/

Leela Mahesh Reddy et.al / Front. Collab. Res, 1(3),20-19, 2023

12

susceptible to limitations under certain conditions, such as

variations in lighting or overlapping foliage.

To overcome these limitations and enhance disease

detection robustness, this research proposes a novel

framework that leverages multimodal fusion. This approach

integrates image data captured from the banana plants with

data collected from sensor networks deployed in the field.

Sensor networks can provide valuable information on various

environmental factors, such as temperature, humidity, and

soil moisture, which can influence disease development. By

fusing both image and sensor data, our framework aims to

achieve a more comprehensive understanding of the disease

status in banana crops. This comprehensive approach has the

potential to improve disease classification accuracy, enable

early disease prediction, and ultimately contribute to more

effective disease management strategies for sustainable

banana production.

Key Contributions

This study proposes a novel framework for robust

banana disease classification and prediction through

multimodal fusion. Our key contributions are:

1. Integration of Image and Sensor Data: We

propose a framework that combines image data

captured from banana plants with environmental

data collected from sensor networks. This

multimodal approach provides a richer picture of

the disease status than relying solely on visual

information.

2. Enhanced Disease Classification Accuracy: By

fusing data from different modalities, we aim to

develop a more robust and accurate disease

classification model compared to models using only

image data.

3. Early Disease Prediction Potential: We explore

the potential of our framework to predict disease

outbreaks based on the combined analysis of image

and sensor data. This could enable proactive disease

management strategies and minimize yield losses.

4. Sustainable Banana Production: By facilitating

earlier disease detection and prediction, this

research contributes to promoting sustainable

banana production practices. This can lead to

improved food security and economic stability for

banana farmers.

2 Literature Review

The novelty of the concept of code smells and

vulnerabilities is primeval as researchers from decade long are

working on this concept but the research methodology

adopted in this paper focusses on the contemporary

techniques of deep learning with primary focus on static

applications developed in java while neglecting the minute

details in a hurry to remit the product to the client and taking

no notice of the maintainability issue that may arise in the near

future.

Kreimer et. al. in his paper prospected a discernment

hinged on decision tree [18] algorithm in which he diagnosed

two imperfections, viz., long method and large class using

Weka using predefined approaches without highlighting the

precision of the data.

Khomh et. al. prospected a discernment hinged on

appendage of Décor approach [19,20] to succour

precariousness in discernment of smells. The metamorphosis

in the form of bayesian belief network led to the new nodes

overruling the impediment of rule cards [20]. The author

contemplated his approach using four modules of application

viz. argouml, eclipse, mylyn and rhino and found 13

antipatterns within the restricted boundary. The relation

between anti pattern and other fault or issues in the application

were not highlighted in the research conducted.

Hassaine et. al. correlated between human’s unsusceptible

program and discernment [22]. The solicited algorithms were

able to predict the presence of code smells in gantt project and

xerces. The code smells predicted in the projects were merely

of three types found within the restricted environment. The

authors could not highlight the other code smells found in the

system and corpus chosen was also miniscule and the

approach could not be applied on colossal corpuses. Oliveto

et. al. prospected a curve of interpolation hinged on metrics

values on anti-pattern specimen, gaining the result of higher

likeliness of the affected class [21, 23] manoeuvring the

endorsement of the classes and the antipattern. The approach

applied was specific and limited to one code smell detection

type, namely, blob and same could not be extended to other

domains.

 Maiga et al. prospected a support vector machine

discernment for blob, functional decomposition and spaghetti

code with former approach related to Smurf [24, 25] on the

same open-source code applications.

Palomba et al. prospected discernment HIST to diagnose

five varied code smells based on the ancestral information

solicited from mining based on rule conglomeration by

defining heuristics [26, 27]. The precision rate of detection

was between 72 and 86 percentage while the rate of recall was

between 58 and 100 percentage. Code smell consists of a huge

list and only one type of it was focusses on in the research

conducted.

Fu and Shen et al. propounded discernment of three code

smells based on 5 varied projects with the history of approx.

5-13 years and displayed the issue of no future versions of the

applications available to be fed into rule mining based on

conglomeration [28].

Arcelli Fontana et al. ushered evaluation of 16 algorithms

hinged on machine learning technique on four code smells,

namely, data class, god class, feature envy and long method

[29] with Qualitus Corpus repository consisting of 74

Leela Mahesh Reddy et.al / Front. Collab. Res, 1(3),20-19, 2023

13

software systems to curate an accuracy prediction of different

algorithms on the same.

Mauna Hadj et al. prospected cross bred perspective to

discern code smells using supervised and unsupervised

learning algorithms manoeuvring auto-encoder and ANN

classifier to generate the desired output [30] with enhanced

veracity. The output has been corroborated using datasets of

colossal freely available software source codes.

Liu H. et al. prospected a dual perspective of code smell

diagnosis, first is the administered code smells in freely

available source code applications and second is in the native

form of those applications with colossal datasets on four code

smells, namely, feature envy, long method, large class and

misplaced class. The proposition adopted forecasted

ameliorated trailblazing using bootstrap aggregating [31]. The

observations in the two perspectives were made as reduction

in associating proposed approach in relation to the native

approach of DÉCOR.

The precursory studies in relation to vulnerabilities are

listed as follows.

Cao et al. built a bidirectional graph neural network for

vulnerability detection [32] and decocting the morphological,

pattern or tectonic data of code base [33]. Wang et al.

prospected the gnn methodology for vulnerability detection

fasten through proximate band [34], diagnosed at functional

level of the code base. Batur et al. prospected a model to

prospect the vulnerability diagnosis using characteristic

choices [35].

Chakrobarty el al. investigated the potentiality of the

software metrics to create non-manual VPM [36] with a

preferably huge measure of reliability by developing a

colossal dataset of php applications based on the web with

approximately 22000 files along with specific characteristic

choices.

Zagane et al. manoeuvres code metrics for numerous

vulnerability diagnosis by inducing ML and DL techniques

[37], also highlighting the dissimilitude between the

characteristic chosen for the same.

Shuban et al. [38] prospected a modern composite

proposition of CNN LSTM enhancing the diagnosis of

vulnerability with verisimilitude of 90% and above with

singleton chapping of code base.

Rebecca L Russel et al. exhibited the potency of the

vulnerability detection based on C/C++ code blocks and

curated it with SATE IV dataset with convolutional neural

network approach[39]. The approach was used for static code

worked within the limited environment and could not be used

to classify or categorise the other vulnerabilities found in

other programming languages like java among others.

The previous conducted works either in the domain of

code smell and vulnerabilities focused primarily on singleton

type of detection technique within the restricted environment

which cannot be used for future findings with least accuracy

predictability.

The research methodology manoeuvred in this paper

focusses on the software vulnerability and code smell

detection hinged on non-dynamism of code base with the

assistance of advisors and software metrics, different datasets

were built with resulted in comparative verisimilitude on deep

learning techniques with maximum accuracy using the model.

Based on the previous studies, several gaps and limitations

have been identified related to code smell and vulnerability

detection which are addressed in the comprehensive

methodology and experimental approach, as outlined below:

1. Restricted Environments and Limited Detection

Techniques: Previous works primarily focused on singleton

detection techniques for code smells or vulnerabilities within

restricted environments, limiting their accuracy and

applicability across diverse codebases. This research

addresses this gap by employing machine learning and deep

learning techniques to detect multiple types of code smells

and vulnerabilities simultaneously across 25 Java applications

from various domains.

2. Lack of Comparative Analysis: Many prior studies

concentrated on a specific code smell or vulnerability without

providing comparative analyses or establishing relationships

between different types of code quality issues. This research

bridges this gap by conducting a comprehensive analysis of

multiple code smells (e.g., God Class, Long Method) and

vulnerabilities (e.g., Law of Demeter, Beam Member Should

Serialize), and exploring the relationships between them using

machine learning algorithms like J48 and JRIP.

3. Limited Investigation of Deep Learning Techniques: Prior

studies mostly employed rule-based methods or conventional

machine learning algorithms, with little investigation of deep

learning techniques for vulnerability and code smell

identification. In order to close this gap, this study applies and

compares the performance of recurrent neural networks

(RNN) and convolutional neural networks (CNN) for

identifying different code smells and vulnerabilities, offering

insights into the efficacy of these cutting-edge methods.

4. Lack of Quantitative Analysis: It is difficult to evaluate the

efficacy of the suggested ways because a large number of

earlier studies either only offered limited quantitative data or

concentrated on qualitative analysis. This study closes this

gap by performing a thorough quantitative investigation and

providing accuracy numbers for several deep learning and

machine learning approaches across a range of code smells

and vulnerabilities.

By addressing these gaps, this research contributes to the field

of software quality analysis by providing a comprehensive

framework for detecting code smells and vulnerabilities using

advanced machine learning and deep learning techniques. The

quantitative results and comparative analyses offer valuable

insights for software developers and researchers, enabling

them to select appropriate algorithms and tools for specific

code quality issues, ultimately improving software

maintainability and security.

3 Various Tools Used

The varied tools used for convoying the experimental

approach is listed in fig 6.

Leela Mahesh Reddy et.al / Front. Collab. Res, 1(3),20-19, 2023

14

The varied tools used for research can be further

bifurcated into three categorizations i.e. advisors, metrics and

deep learning techniques. The advisors used for the analysis

consists of PMD, IntelliJ Idea and JDeodorant.

PMD [41], an eclipse plugin is a non-proprietary

undeviating source code software that delineates faults in an

application code. It encompasses incorporated rule sets and

brace the capability of generating self-incorporated rule sets.

The matter in question delineated by it concludes faults which

diminishes the execution and rectifiability of the accumulated

program code. The feature of the tool incorporates locating

doable gremlin, out of order convention, intricate articulation,

lame convention and mimeographed code.

IntelliJ Idea[43], prepared in Java programming language

is an IDE curating characteristics like intelligent

consummation, shackles consummation, undeviating member

completion, information flow probing, speech inoculation and

predicting mimeographs in code. The plugin used is Intelli

JDeodorant considerate in detecting code smells such as

feature envy, long method, god class and type checking error.

Fig

6. Tools used in research methodology.

JDeodorant[41], code smell detection as well as

refactoring tool, is an eclipse plugin employs varied

methodology and strategies so as to ascertain code smells and

resolve them using refactoring. The tool is capable of

pinpointing five different types of smells, namely, god class,

long method, feature envy, duplicate code and type checking

error.

The list of characteristics of the tool inculcates

transfiguration of connoisseur apprehension to totally

motorized action, antecedent valuation of the advocated quick

fix, admonishment in encompassing delineation snag and end

user amiability.

The tool used for metric computation is Scitool

Understand [42] which was fitted to succour the software

developers encompass, perpetuate and indenture the source

code. The tool coherent metrics via command line calls,

tabulation exportation perceptibly surveyed or tailor-made

API. The tool is capable of perusing projects with millions of

lines of code written in various programming languages like

python, c++, ruby, java among others. The tool withholds

various applications for government, commercial and

academic use, multilayered industrial usage and inculcates

varied utilization of software source code development. The

tool used for deep learning implementation of algorithms is

google colab, accelerates using cloud services provided by

google, a free jupyter notebook with no premature

essentialities to fulfil with multiple adjuvant libraries.

The features supported by the google colab are correspond

and accomplish code using python, catalogue the adjunct code

with equations related to mathematics, fabricate or transmit

logbook, implicate to google drive or amalgamate libraries

like pytorch, tensor flow among others. The libraries used for

perusing the research methodology are keras for quicker

accomplishment of tasks, indispensable preoccupation and

constructing blockades with exorbitant repetitive rapidity.

The crucial characteristics of keras inculcates meteoric

facsimile antecedent, expansible facsimile pedagogy, tuning

parameters, presumption facsimile reckoning, and antecedent

disposition on mobile and browser. Another noticeable

feature includes pandas with information artifices and perusal

for tables and tetralogy. The varied functions accede potency

such as consolidate, revamp, designating as well as data

squabbling. Numpy, one of the basic conglomerations of the

programming in python. It has predetermined extent of

multidimensional array which can perform functions like

operations on mathematics, fundamental unswerving

calculus, fundamental demographic operations among others.

Weka, also known as Waikato Environment for

Knowledge Analysis [40], is an open-source software that

provides a collection of machine learning algorithms for data

mining. It includes tools for data pre-processing,

classification, regression, clustering, association rules, and

visualization. It is ideal for developing new machine learning

schemes and offers features such as an Explorer for data

exploration, an Experimenter for performing experiments,

and a Knowledge Flow for setting up and running

experiments. The Simple CLI provides a command line

interface for direct execution of Weka commands. The

Explorer includes filters for discretization, normalization,

resampling, attribute selection, transformation, and

association rule mining. It also provides models for predicting

nominal and numeric quantities, such as decision trees,

instance-based classifiers, support vector machines, bagging,

boosting, stacking, error correction, and logically weighted

learning. The Cluster tool is used to find groups of similar

instances in a dataset, and the Associations algorithm is used

to learn association rules. The Attribute Selection tool

searches through all possible combinations of attributes in

data and finds the best subset for prediction. Weka is an

excellent platform for running various data mining algorithms

and automatically converts CSV files into ARFF files.

4 Experimental Approach

The research methodology as depicted in fig 7 is

subdivided into 8 different phases. The dataset is curated using

software metrics and advisors and then by applying two deep

learning techniques, namely, CNN and RNN, verisimilitude

of the dataset was compiled and contrasted.

4.1 Corpus Collection

Section I is the initiation phase. The initiation phase

embodies curation of corpus collection from github preferably

Leela Mahesh Reddy et.al / Front. Collab. Res, 1(3),20-19, 2023

15

based on java software applications. The sum total of

applications includes source code from 25 different

applications.

4.2 Code smell and vulnerability detection

The Section II of the experimental approach embraces

code smell and vulnerability detection using code smell and

vulnerability confidante respectively. The code smells such

as god class, feature envy, long method and duplicate code are

detected using JDeodorant[14,15], PMD[13] and IntelliJ

Idea[15]. The advisor used for alarming vulnerabilities such

as law of demeter, beam member should serialize, and too

many methods is PMD [13].

4.3 Software metrics computation

The Section III is the computation of software metrics

using a tool called Scitool Understand [12]. The colossal

enumeration of metrics provided by the tool can further be

bifurcated into complexity metrics, object-oriented metrics

and volume metrics. The tool was chosen as it brings forth

computation of varied metrics based on programming

languages such as java, python, ruby, C++ etc. with inbuilt

characteristics, namely, testimonial of code, graphing, finding

out, testing, metrics compilation and report formulation with

millions of lines of code of software being under construction.

4.4 Formalizing Dataset

The Section IV is the utmost crucial phase in the

unblemished cycle of experimentation as it deals with

formalizing the dataset which will be further used for analysis

purpose. The dataset is formulated with the help of advisors

and metrics computed by taking into consideration the

positive and negative instances. The dataset has been curated

using stratified sampling approach [16] which is a process of

dissecting the projection of the populace into congruent

subspecies preceding the sampling procedure, then labelling

based on positive or negative instances.

Fig 7 Research Methodology

4.5 Data Pre-processing

 The Section V of the experimental approach relates to the

stage of data pre-processing as depicted in fig 8, a crucial step

Leela Mahesh Reddy et.al / Front. Collab. Res, 1(3),20-19, 2023

16

before parsing into the algorithmic stage. Data pre-processing

is a data mining technique that necessitates metamorphosing

skinned data into an understandable format. The data curated

from the modern-day world is generally prone to fallacy,

fragmented, devoid of certain inclination or practices which

gets pronounced by this technique.

Fig 8 Steps in data preprocessing

The fig 8 mentions the steps taken to prepare dataset for

analysis and verisimilitude prediction using google colab and

weka by implementing methodologies such as CNN and RNN

and many machine learning algorithms like J48, JRip, Naïve

Bayes etc. and a comparison has been achieved hinged upon

them. The data preprocessing can be sub classified into 6

crucial steps as mentioned in Fig 8. The process initializes with

data cleaning, a process of pigeonholing the mislaid data or

eradicating rows with mislaid data, flattening the clamorous

data or straightening out the data at odds, the chances of

getting it either through human fault or doubling of data. Data

integration is a way of binding data with varied delineation

along with discord rectification. Data transformation can be

carried out using generalization and normalization of data.

The methodology used in this process is normalization which

ensures that all the redundant data is erased and all the

possession is cerebral. Data reduction is the process of

minimizing the colossal amount of data which makes

databases huge, obtuse and extortionate into small chunks of

easily comprehensible data. The reduction can be lossless and

lossy wherein lossless deals with recovery of original data

after condensation and lossy data, where some amount of

native data is lost while reduction.

Data discretization, a process involving stacking of

relevant data into scuttles to get the minimized number of

possible states. A process of transforming incessant functions,

models, attributes among others into discrete analogue.Data

sampling is a leading way to reduce the amount of data to be

used for data mining technique in order to make the procedure

fast, pocket friendly and avoid storage consumption. The

results produced are same as the native data as it is generally

the subset of the native dataset.

Method argument could be final:

 The algorithm JRIP produced the best results when

compared with 75.86% shown in fig 15.

Fig 15: Algorithm comparison for method argument could

be final

Local variable could be final:

 The algorithm JRIP produced the best results when

compared with 88.07% shown in fig 16.

Fig 16: Algorithm comparison for local variable could be

final

RQ2: Which tool is best for detecting code smells in java

applications based on machine learning algorithms?

To answer the research question, two tools, namely, PMD

and IntelliJ Idea is used for two code smells, namely, god class

and long method which were detected largely from source

data curated from github and found out that PMD produced

the best results as shown in fig 17 and fig 18 respectively with

output value greater than 90%.

Fig 17: God Class result for two different software

66.7

75.86

57.19

74 75.6 73.84
66.7

0

10

20

30

40

50

60

70

80

method argument could be final

89.82 86
76.49

88.07 83.85
90.35

66.67

0
10
20
30
40
50
60
70
80
90

100

local variable could be final

98.14 96.05 95.37 97.22

80.35 78.34

70.69
67.25

0

20

40

60

80

100

120

J48 Jrip Random
Forest

Naïve Bayes

God Class

Code Smell detected using PMD

Code Smell detected using Intellij Idea

Leela Mahesh Reddy et.al / Front. Collab. Res, 1(3),20-19, 2023

17

Fig 18: Long Method result for two different software

RQ3: Is there exists a similarity between code smell and

vulnerability?

 To address this question, tools used are scitool

understand, PMD and Weka. There exists a relationship

between code smell and vulnerability. The violation pattern

shown by both corresponds with one another. Not only in

definition but, practically also they both are similar to each

other being two different terms with one meaning

theoretically as well as practically. The relationship is found

on the basis of the rules generated by WEKA on certain

dataset by applying machine learning algorithms such as J48

and JRip as the highest result among all the algorithms can

be seen in the case of these two algorithms as shown in table

2.
Table 2: Relationship between code smell and vulnerability

RQ4: Which deep learning algorithm provides maximum

accuracy for a particular code smell and vulnerability

respectively?

The answer of the research question is based on the

comparison of the CNN and RNN techniques of deep learning

using google colab are computed as below.

The table 3 reflects the code smell accuracy prediction

using the above-mentioned techniques.

The table 4 reflects the software vulnerability accuracy

prediction using the above-mentioned techniques.

Table 3: Comparison of CNN and RNN techniques for code smells

Code Smell Accuracy prediction

using CNN

Accuracy

prediction using

RNN

God Class 90.08% 86.78%

Long

Method

89.18% 81.08%

Table 4: Comparison of CNN and RNN techniques for vulnerabilities

Vulnerability Accuracy prediction

using CNN

Accuracy

prediction using

RNN

Law of Demeter 96.77% 91.39%

Beam member

should serialize
85.50% 88.40%

Too many

method

71.42% 94.28%

Cyclomatic

Complexity

92.64% 80.82%

 Through the research methodology adopted to prophesy

the accuracy of code smells and vulnerabilities using deep

learning techniques, namely, CNN and RNN, it can be

conjectured that contingent upon code smells, CNN

methodology provided the best results as compared to RNN.

While contingent upon vulnerabilities, law of demeter and

cyclomatic complexity conjectured the unrivalled results from

CNN and the vulnerabilities, beam member should serialize

and too many method conjectured unrivalled results using

RNN methodology.

The presence of code smell or vulnerability in

maintenance phase of the SDLC poses grave concern for the

software developers which opens the door for attackers to

easily breach the security protocols. The detection of

particular code smell and vulnerability will help them to

reduce the threat as the percentage of presence poses an

alarming risk towards software as detection in this research

process.

6 Conclusion

 The research paper explores the use of machine learning

and deep learning techniques to detect code smells and

vulnerabilities in Java applications. The methodology is

structured, utilizing various tools and advisors to curate

datasets, compute software metrics, pre-process data, and

apply algorithms for analysis. The findings reveal insights

into the performance of different algorithms for specific

vulnerabilities and code smells. Machine learning algorithms

like JRIP and J48 produce the best results for vulnerabilities

like Law of Demeter, Beam Member Should Serialize, Npath

Complexity, and Too Many Methods. PMD tool outperforms

IntelliJ Idea in detecting code smells like God Class and Long

Method in Java applications. The study establishes a

relationship between code smells and vulnerabilities,

suggesting they share similarities in violation patterns and

practical implications. This aligns with the theoretical

understanding that both code smells and vulnerabilities can

99 99.28 98
93.5

90
85.28 82.25 80.25

0

20

40

60

80

100

120

J48 Jrip Random
Forest

Naïve Bayes

Long Method

Code Smell detected using PMD

Code Smell detected using Intellij Idea

Code smell Vulnerability Algorithm Rule matched

God class Too many
methods

JRIP CountDeclMethod>=1
7

Cyclomatic

complexity

Npath
complexity

J48 SumCyclomaticStrict>
8

Long method

Excessive

method length

JRIP

CountLine>=80,

SumCyclomatic >=11

Leela Mahesh Reddy et.al / Front. Collab. Res, 1(3),20-19, 2023

18

negatively impact software quality and maintainability. The

study compares the accuracy of Convolutional Neural

Networks (CNN) and Recurrent Neural Networks (RNN) for

specific code smells and vulnerabilities. CNN outperforms

RNN for certain code smells, while RNN provides better

accuracy for some vulnerabilities. The research contributes to

the field of software quality analysis by providing a

comprehensive framework for detecting code smells and

vulnerabilities using machine learning and deep learning

approaches. Future research could expand the dataset, explore

advanced techniques for code smell and vulnerability

detection, and incorporate refactoring strategies. The work

carried out can be further outstretch to other code smells and

vulnerabilities based on software metrics and static software

application detection along with refactoring techniques to be

applied for prevention it in furtherance.

Author Contributions: The author is solely

responsible for Conceptualization, Resources, and Writing.

Data availability: Data available upon request.

Conflict of Interest: There is no conflict of Interest.

Funding: The research received no external funding.

Similarity checked: Yes.

References

[1] Andreades, T. D., & Goldsmith, A. (2014).

Counterfeit mobile phone detection using signal

fingerprinting. IEEE Transactions on Wireless

Communications, 13(1), 1-14.

https://ieeexplore.ieee.org/document/6641193

[2] Basiri, A., Mahmud, R., & Vanhoef, M. (2016).

Survey of mobile malware on android and ios

platforms. Proceedings of the 2016 49th Hawaii

International Conference on System Sciences

(HICSS) (pp. 2720-2729). IEEE.

https://ieeexplore.ieee.org/document/7785084

[3] Chen, Y., Xu, X., Zhou, L., Zhao, J., Li, J., & Li, W.

(2017). A blockchain-based system for smartphone

anti-theft. IEEE Access, 5, 10006-10016.

https://ieeexplore.ieee.org/document/8008474

[4] Dorri, A., Moustafa, N., Bahga, W., & Gupta, D.

(2017). Blockchain for IoT security and privacy: A

survey. IEEE Transactions on Engineering

Management, 64(3), 818-833.

https://ieeexplore.ieee.org/document/8011209

[5] Khan, M. A., Khan, S., & Wang, H. (2021). A

survey on mobile malware detection techniques.

IEEE Communications Surveys & Tutorials, 23(2),

1202-1248. [invalid URL removed]

[6] Lin, C., Shen, J., & Liu, C. (2017). A survey on

mobile phone security. Journal of Network and

Computer Applications, 109, 917-929. [invalid

URL removed]

[7] Metsätähti, T., & Lekkala, J. (2010). Combating

counterfeit mobile phones: A survey of anti-

counterfeiting techniques. IEEE Communications

Surveys & Tutorials, 12(2), 148-160.

https://ieeexplore.ieee.org/document/5424225

[8] Nikitin, K., Bhardwaj, S., Collings, M., Ravi, N.,

Lefkovitz, D., & Hines, P. (2019). A survey of

mobile device security: Attacks, detection, and

defense. ACM Computing Surveys (CSUR), 52(2),

1-42. [invalid URL removed]

[9] Wang, Y., Xu, X., Li, M., & Ren, Y. (2020).

Blockchain for mobile device security and privacy:

A systematic survey. IEEE Communications

Surveys & Tutorials, 22(2), 1272-1295.

https://ieeexplore.ieee.org/document/8926388

[10] Zhang, Y., Li, M., & Xu, W. (2019). Enhancing

mobile device security with blockchain technology.

IEEE Access, 7, 15Lee, A. (2021). Machine

learning techniques for sustainable agriculture.

Smart Farming Technologies, 2(2), 112-130.

[11] Moore, F. T., & Thompson, J. (2023). Smart

irrigation systems and water efficiency. Agricultural

Water Management, 220, 34-47.

[12] Nguyen, P., & Chung, H. (2022). Aquatic

ecosystems and sustainable practices in agriculture.

Journal of Sustainable Agriculture, 46(1), 22-37.

[13] Parker, S., & Luo, Y. (2021). The impact of IoT in

agricultural productivity. Journal of Modern

Agriculture, 10(4), 250-265.

[14] Rodriguez, F., & Martinez, L. (2023). Ecological

indicators for water management in agriculture.

Ecological Indicators, 39, 101-116.

[15] Smith, B. E., & Zhao, L. (2022). The role of AI in

transforming water management. Water Resources

Impact, 24(1), 19-33.

[16] Thomas, G., & Franklin, J. (2021). Bridging AI and

the environment in agriculture. Environmental

Science & Technology, 55(3), 142-158.

[17] Wallace, K., & Kumar, A. (2023). IoT for advanced

water management in farming. Journal of

Hydrology, 591, 125609.

[18] Watson, D., & Singh, S. (2022). Enhancing crop

yields through IoT-based solutions. Crop Science,

62(5), 2130-2145.

[19] Young, J., & Patel, S. (2021). Water conservation

technologies in agriculture. Water Management

Reviews, 5(4), 204-220.

